When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Maximum and minimum - Wikipedia

    en.wikipedia.org/wiki/Maximum_and_minimum

    Local maximum at x = −1− √ 15 /3, local minimum at x = −1+ √ 15 /3, global maximum at x = 2 and global minimum at x = −4. For a practical example, [ 6 ] assume a situation where someone has 200 {\displaystyle 200} feet of fencing and is trying to maximize the square footage of a rectangular enclosure, where x {\displaystyle x} is ...

  3. Extreme value theorem - Wikipedia

    en.wikipedia.org/wiki/Extreme_value_theorem

    The extreme value theorem was originally proven by Bernard Bolzano in the 1830s in a work Function Theory but the work remained unpublished until 1930. Bolzano's proof consisted of showing that a continuous function on a closed interval was bounded, and then showing that the function attained a maximum and a minimum value.

  4. Maximum-minimums identity - Wikipedia

    en.wikipedia.org/wiki/Maximum-minimums_identity

    In mathematics, the maximum-minimums identity is a relation between the maximum element of a set S of n numbers and the minima of the 2 n − 1 non-empty subsets of S.

  5. List of limits - Wikipedia

    en.wikipedia.org/wiki/List_of_limits

    If () = = and () () for all x in an open interval that contains c, except possibly c itself, =. This is known as the squeeze theorem . [ 1 ] [ 2 ] This applies even in the cases that f ( x ) and g ( x ) take on different values at c , or are discontinuous at c .

  6. Derivative test - Wikipedia

    en.wikipedia.org/wiki/Derivative_test

    Stated precisely, suppose that f is a real-valued function defined on some open interval containing the point x and suppose further that f is continuous at x.. If there exists a positive number r > 0 such that f is weakly increasing on (x − r, x] and weakly decreasing on [x, x + r), then f has a local maximum at x.

  7. Maximal and minimal elements - Wikipedia

    en.wikipedia.org/wiki/Maximal_and_minimal_elements

    The maximum of a subset of a preordered set is an element of which is greater than or equal to any other element of , and the minimum of is again defined dually. In the particular case of a partially ordered set , while there can be at most one maximum and at most one minimum there may be multiple maximal or minimal elements.

  8. Fermat's theorem (stationary points) - Wikipedia

    en.wikipedia.org/wiki/Fermat's_theorem...

    Assume that function f has a maximum at x 0, the reasoning being similar for a function minimum. If x 0 ∈ ( a , b ) {\displaystyle x_{0}\in (a,b)} is a local maximum then, roughly, there is a (possibly small) neighborhood of x 0 {\displaystyle x_{0}} such as the function "is increasing before" and "decreasing after" [ note 1 ] x 0 ...

  9. Talk:Maximum and minimum - Wikipedia

    en.wikipedia.org/wiki/Talk:Maximum_and_minimum

    Is there an efficient way to find the global maximum/minimum? Take for example the sine integral. It has an infinite number of local maxima and minima. So how can one decide which one is the global maximum/minimum? --Abdull 17:04, 17 May 2007 (UTC) Not in the absolutely general case.