When.com Web Search

  1. Ad

    related to: why do plants need translocation energy to release hydrogen oxygen

Search results

  1. Results From The WOW.Com Content Network
  2. Photosynthesis - Wikipedia

    en.wikipedia.org/wiki/Photosynthesis

    The hydrogen ions are released in the thylakoid lumen and therefore contribute to the transmembrane chemiosmotic potential that leads to ATP synthesis. Oxygen is a waste product of light-dependent reactions, but the majority of organisms on Earth use oxygen and its energy for cellular respiration, including photosynthetic organisms. [28] [29]

  3. Oxidative phosphorylation - Wikipedia

    en.wikipedia.org/wiki/Oxidative_phosphorylation

    The chain of redox reactions driving the flow of electrons through the electron transport chain, from electron donors such as NADH to electron acceptors such as oxygen and hydrogen (protons), is an exergonic process – it releases energy, whereas the synthesis of ATP is an endergonic process, which requires an input of energy.

  4. Water splitting - Wikipedia

    en.wikipedia.org/wiki/Water_splitting

    In thermolysis, water molecules split into hydrogen and oxygen. For example, at 2,200 °C (2,470 K; 3,990 °F) about three percent of all H 2 O are dissociated into various combinations of hydrogen and oxygen atoms, mostly H, H 2, O, O 2, and OH. Other reaction products like H 2 O 2 or HO 2 remain minor. At the very high temperature of 3,000 ...

  5. Thylakoid - Wikipedia

    en.wikipedia.org/wiki/Thylakoid

    The water-splitting reaction occurs on the lumenal side of the thylakoid membrane and is driven by the light energy captured by the photosystems. This oxidation of water conveniently produces the waste product O 2 that is vital for cellular respiration. The molecular oxygen formed by the reaction is released into the atmosphere.

  6. Light-dependent reactions - Wikipedia

    en.wikipedia.org/wiki/Light-dependent_reactions

    To do this, it must release the absorbed energy. This can happen in various ways. The extra energy can be converted into molecular motion and lost as heat, or re-emitted by the electron as light (fluorescence). The energy, but not the electron itself, may be passed onto another molecule; this is called resonance energy transfer.

  7. Heterogeneous water oxidation - Wikipedia

    en.wikipedia.org/wiki/Heterogeneous_Water_Oxidation

    This process occurs naturally in plants photosystem II to provide protons and electrons for the photosynthesis process and release oxygen to the atmosphere, [1] as well as in some electrowinning processes. [2] Since hydrogen can be used as an alternative clean burning fuel, there has been a need to split water efficiently.

  8. Photosystem II - Wikipedia

    en.wikipedia.org/wiki/Photosystem_II

    Photosynthetic water splitting (or oxygen evolution) is one of the most important reactions on the planet, since it is the source of nearly all the atmosphere's oxygen. Moreover, artificial photosynthetic water-splitting may contribute to the effective use of sunlight as an alternative energy-source.

  9. Chemosynthesis - Wikipedia

    en.wikipedia.org/wiki/Chemosynthesis

    Venenivibrio stagnispumantis gains energy by oxidizing hydrogen gas.. In biochemistry, chemosynthesis is the biological conversion of one or more carbon-containing molecules (usually carbon dioxide or methane) and nutrients into organic matter using the oxidation of inorganic compounds (e.g., hydrogen gas, hydrogen sulfide) or ferrous ions as a source of energy, rather than sunlight, as in ...