Ads
related to: perpendicular line calculator that goes through a point formula free
Search results
Results From The WOW.Com Content Network
The line with equation ax + by + c = 0 has slope -a/b, so any line perpendicular to it will have slope b/a (the negative reciprocal). Let (m, n) be the point of intersection of the line ax + by + c = 0 and the line perpendicular to it which passes through the point (x 0, y 0). The line through these two points is perpendicular to the original ...
the distance between the two lines is the distance between the two intersection points of these lines with the perpendicular line y = − x / m . {\displaystyle y=-x/m\,.} This distance can be found by first solving the linear systems
A chord (from the Latin chorda, meaning "bowstring") of a circle is a straight line segment whose endpoints both lie on a circular arc. If a chord were to be extended infinitely on both directions into a line, the object is a secant line. The perpendicular line passing through the chord's midpoint is called sagitta (Latin for "arrow").
The distance from a point to a plane is measured as the length from the point along a segment that is perpendicular to the plane, meaning that it is perpendicular to all lines in the plane that pass through the nearest point in the plane to the given point. Other instances include: Point on plane closest to origin, for the perpendicular ...
To make the perpendicular to the line AB through the point P using compass-and-straightedge construction, proceed as follows (see figure left): Step 1 (red): construct a circle with center at P to create points A' and B' on the line AB, which are equidistant from P. Step 2 (green): construct circles centered at A' and B' having equal radius.
The point P is the inversion point of Q; the polar is the line through P that is perpendicular to the line containing O, P and Q. If point R is the inverse of point P then the lines perpendicular to the line PR through one of the points is the polar of the other point (the pole). Poles and polars have several useful properties:
In geometry, Thales's theorem states that if A, B, and C are distinct points on a circle where the line AC is a diameter, the angle ∠ ABC is a right angle. Thales's theorem is a special case of the inscribed angle theorem and is mentioned and proved as part of the 31st proposition in the third book of Euclid 's Elements . [ 1 ]
Conversely, at any point R on the curve C, let T be the tangent line at that point R; then there is a unique point X on the tangent T which forms with the pedal point P a line perpendicular to the tangent T (for the special case when the fixed point P lies on the tangent T, the points X and P coincide) – the pedal curve is the set of such ...