Ad
related to: absolute value inequality answer key word
Search results
Results From The WOW.Com Content Network
The real absolute value function is an example of a continuous function that achieves a global minimum where the derivative does not exist. The subdifferential of | x | at x = 0 is the interval [−1, 1]. [14] The complex absolute value function is continuous everywhere but complex differentiable nowhere because it violates the Cauchy–Riemann ...
The standard absolute value on the integers. The standard absolute value on the complex numbers.; The p-adic absolute value on the rational numbers.; If R is the field of rational functions over a field F and () is a fixed irreducible polynomial over F, then the following defines an absolute value on R: for () in R define | | to be , where () = () and ((), ()) = = ((), ()).
The feasible regions of linear programming are defined by a set of inequalities. In mathematics, an inequality is a relation which makes a non-equal comparison between two numbers or other mathematical expressions. [1] It is used most often to compare two numbers on the number line by their size.
In mathematics, a norm is a function from a real or complex vector space to the non-negative real numbers that behaves in certain ways like the distance from the origin: it commutes with scaling, obeys a form of the triangle inequality, and is zero only at the origin.
Bennett's inequality, an upper bound on the probability that the sum of independent random variables deviates from its expected value by more than any specified amount Bhatia–Davis inequality , an upper bound on the variance of any bounded probability distribution
The real numbers form a metric space: the distance between x and y is defined as the absolute value |x − y|. By virtue of being a totally ordered set, they also carry an order topology ; the topology arising from the metric and the one arising from the order are identical, but yield different presentations for the topology—in the order ...
In mathematics the estimation lemma, also known as the ML inequality, gives an upper bound for a contour integral. If f is a complex -valued, continuous function on the contour Γ and if its absolute value | f ( z ) | is bounded by a constant M for all z on Γ , then
Landau's inequality provides an upper bound for the absolute values of the product of the roots that have an absolute value greater than one. This inequality, discovered in 1905 by Edmund Landau , [ 9 ] has been forgotten and rediscovered at least three times during the 20th century.