When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Cross product - Wikipedia

    en.wikipedia.org/wiki/Cross_product

    The cross product a × b is defined as a vector c that is perpendicular (orthogonal) to both a and b, with a direction given by the right-hand rule [1] and a magnitude equal to the area of the parallelogram that the vectors span. [2] The cross product is defined by the formula [8] [9]

  3. Lists of vector identities - Wikipedia

    en.wikipedia.org/wiki/Lists_of_vector_identities

    Vector algebra relations — regarding operations on individual vectors such as dot product, cross product, etc. Vector calculus identities — regarding operations on vector fields such as divergence, gradient, curl, etc.

  4. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    The generalization of the dot product formula to Riemannian manifolds is a defining property of a Riemannian connection, which differentiates a vector field to give a vector-valued 1-form. Cross product rule

  5. Right-hand rule - Wikipedia

    en.wikipedia.org/wiki/Right-hand_rule

    The direction of the cross product may be found by application of the right-hand rule as follows: The index finger points in the direction of the velocity vector v. The middle finger points in the direction of the magnetic field vector B. The thumb points in the direction of the cross product F. For example, for a positively charged particle ...

  6. Poynting vector - Wikipedia

    en.wikipedia.org/wiki/Poynting_vector

    Substituting the earlier solution for the constant W we find: = ⁡ ⁡ (/) = that is, the power given by integrating the Poynting vector over a cross section of the coaxial cable is exactly equal to the product of voltage and current as one would have computed for the power delivered using basic laws of electricity.

  7. Curl (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Curl_(mathematics)

    Integrating this cross product over the whole surface results in a vector whose magnitude measures the overall circulation of F around S, and whose direction is at right angles to this circulation. The above formula says that the curl of a vector field at a point is the infinitesimal volume density of this "circulation vector" around the point.

  8. Vector algebra relations - Wikipedia

    en.wikipedia.org/wiki/Vector_algebra_relations

    The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.

  9. Seven-dimensional cross product - Wikipedia

    en.wikipedia.org/.../Seven-dimensional_cross_product

    In three dimensions the cross product is invariant under the action of the rotation group, SO(3), so the cross product of x and y after they are rotated is the image of x × y under the rotation. But this invariance is not true in seven dimensions; that is, the cross product is not invariant under the group of rotations in seven dimensions, SO(7).