Search results
Results From The WOW.Com Content Network
In geometry, a cube or regular hexahedron is a three-dimensional solid object bounded by six congruent square faces, a type of polyhedron. It has twelve congruent edges and eight vertices. It has twelve congruent edges and eight vertices.
Etymologically, "cuboid" means "like a cube", in the sense of a convex solid which can be transformed into a cube (by adjusting the lengths of its edges and the angles between its adjacent faces). A cuboid is a convex polyhedron whose polyhedral graph is the same as that of a cube. [1] [2] General cuboids have many different types.
In geometry, an edge is a particular type of line segment joining two vertices in a polygon, polyhedron, or higher-dimensional polytope. [1] In a polygon, an edge is a line segment on the boundary, [2] and is often called a polygon side. In a polyhedron or more generally a polytope, an edge is a line segment where two faces (or polyhedron sides ...
Next, the cube is rotated ±45° about the vertical axis, followed by a rotation of approximately 35.264° (precisely arcsin 1 ⁄ √ 3 or arctan 1 ⁄ √ 2, which is related to the Magic angle) about the horizontal axis. Note that with the cube (see image) the perimeter of the resulting 2D drawing is a perfect regular hexagon: all the black ...
In geometry, a tesseract or 4-cube is a four-dimensional hypercube, analogous to a two-dimensional square and a three-dimensional cube. [1] Just as the perimeter of the square consists of four edges and the surface of the cube consists of six square faces, the hypersurface of the tesseract consists of eight cubical cells, meeting at right angles.
The skeleton of a regular octahedron can be represented as a graph according to Steinitz's theorem, provided the graph is planar—its edges of a graph are connected to every vertex without crossing other edges—and 3-connected graph—its edges remain connected whenever two of more three vertices of a graph are removed.
A rectangular cuboid with integer edges, as well as integer face diagonals, is called an Euler brick; for example with sides 44, 117, and 240. A perfect cuboid is an Euler brick whose space diagonal is also an integer. It is currently unknown whether a perfect cuboid actually exists. [6] The number of different nets for a simple cube is 11 ...
The other coordinates can be obtained from vector addition [5] of the 3 direction vectors: e 1 + e 2, e 1 + e 3, e 2 + e 3, and e 1 + e 2 + e 3. The volume V {\displaystyle V} of a rhombohedron, in terms of its side length a {\displaystyle a} and its rhombic acute angle θ {\displaystyle \theta ~} , is a simplification of the volume of a ...