When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Chord (geometry) - Wikipedia

    en.wikipedia.org/wiki/Chord_(geometry)

    Ptolemy used a circle of diameter 120, and gave chord lengths accurate to two sexagesimal (base sixty) digits after the integer part. [2] The chord function is defined geometrically as shown in the picture. The chord of an angle is the length of the chord between two points on a unit circle separated by that central angle.

  3. Circular segment - Wikipedia

    en.wikipedia.org/wiki/Circular_segment

    In the design of windows or doors with rounded tops, c and h may be the only known values and can be used to calculate R for the draftsman's compass setting. One can reconstruct the full dimensions of a complete circular object from fragments by measuring the arc length and the chord length of the fragment. To check hole positions on a circular ...

  4. Intersecting chords theorem - Wikipedia

    en.wikipedia.org/wiki/Intersecting_chords_theorem

    The value of the two products in the chord theorem depends only on the distance of the intersection point S from the circle's center and is called the absolute value of the power of S; more precisely, it can be stated that: | | | | = | | | | = where r is the radius of the circle, and d is the distance between the center of the circle and the ...

  5. Great-circle distance - Wikipedia

    en.wikipedia.org/wiki/Great-circle_distance

    For modern 64-bit floating-point numbers, the spherical law of cosines formula, given above, does not have serious rounding errors for distances larger than a few meters on the surface of the Earth. [3] The haversine formula is numerically better-conditioned for small distances by using the chord-length relation: [4]

  6. Constant chord theorem - Wikipedia

    en.wikipedia.org/wiki/Constant_chord_theorem

    The constant chord theorem is a statement in elementary geometry about a property of certain chords in two intersecting circles. The circles k 1 {\displaystyle k_{1}} and k 2 {\displaystyle k_{2}} intersect in the points P {\displaystyle P} and Q {\displaystyle Q} .

  7. Degree of curvature - Wikipedia

    en.wikipedia.org/wiki/Degree_of_curvature

    Where degree of curvature is based on 100 units of arc length, the conversion between degree of curvature and radius is Dr = 18000/π ≈ 5729.57795, where D is degree and r is radius. Since rail routes have very large radii, they are laid out in chords, as the difference to the arc is inconsequential; this made work easier before electronic ...

  8. Sagitta (geometry) - Wikipedia

    en.wikipedia.org/wiki/Sagitta_(geometry)

    When the sagitta is small in comparison to the radius, it may be approximated by the formula [2] s ≈ l 2 8 r . {\displaystyle s\approx {\frac {l^{2}}{8r}}.} Alternatively, if the sagitta is small and the sagitta, radius, and chord length are known, they may be used to estimate the arc length by the formula

  9. Ptolemy's table of chords - Wikipedia

    en.wikipedia.org/wiki/Ptolemy's_table_of_chords

    When the arc reaches 60°, the chord length is exactly equal to the number of degrees in the arc, i.e. chord 60° = 60. For arcs of more than 60°, the chord is less than the arc, until an arc of 180° is reached, when the chord is only 120. The fractional parts of chord lengths were expressed in sexagesimal (base 60) numerals. For example ...