Search results
Results From The WOW.Com Content Network
The slope field can be defined for the following type of differential equations ′ = (,), which can be interpreted geometrically as giving the slope of the tangent to the graph of the differential equation's solution (integral curve) at each point (x, y) as a function of the point coordinates.
If x kilograms of salami and y kilograms of sausage costs a total of €12 then, €6×x + €3×y = €12. Solving for y gives the point-slope form = +, as above. That is, if we first choose the amount of salami x, the amount of sausage can be computed as a function = = +.
Vertical line of equation x = a Horizontal line of equation y = b. Each solution (x, y) of a linear equation + + = may be viewed as the Cartesian coordinates of a point in the Euclidean plane. With this interpretation, all solutions of the equation form a line, provided that a and b are not both zero. Conversely, every line is the set of all ...
Slope illustrated for y = (3/2)x − 1.Click on to enlarge Slope of a line in coordinates system, from f(x) = −12x + 2 to f(x) = 12x + 2. The slope of a line in the plane containing the x and y axes is generally represented by the letter m, [5] and is defined as the change in the y coordinate divided by the corresponding change in the x coordinate, between two distinct points on the line.
Fig. 1: Isoclines (blue), slope field (black), and some solution curves (red) of y' = xy. The solution curves are y = C e x 2 / 2 {\displaystyle y=Ce^{x^{2}/2}} . Given a family of curves , assumed to be differentiable , an isocline for that family is formed by the set of points at which some member of the family attains a given slope .
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.
For example, a circle of radius 2, centered at the origin of the plane, may be described as the set of all points whose coordinates x and y satisfy the equation x 2 + y 2 = 4; the area, the perimeter and the tangent line at any point can be computed from this equation by using integrals and derivatives, in a way that can be applied to any curve.
By doing the above step, we have found the slope of the line that is tangent to the solution curve at the point (,). Recall that the slope is defined as the change in y {\displaystyle y} divided by the change in t {\displaystyle t} , or Δ y Δ t {\textstyle {\frac {\Delta y}{\Delta t}}} .