Search results
Results From The WOW.Com Content Network
Principal component analysis (PCA) is a linear dimensionality reduction technique with applications in exploratory data analysis, visualization and data preprocessing. The data is linearly transformed onto a new coordinate system such that the directions (principal components) capturing the largest variation in the data can be easily identified.
The sub-space found with principal component analysis or factor analysis is expressed as a dense basis with many non-zero weights which makes it hard to interpret. Varimax is so called because it maximizes the sum of the variances of the squared loadings (squared correlations between variables and factors). Preserving orthogonality requires ...
Simultaneous component analysis is mathematically identical to PCA, but is semantically different in that it models different objects or subjects at the same time. The standard notation for a SCA – and PCA – model is: = ′ + where X is the data, T are the component scores and P are the component loadings.
Output after kernel PCA, with a Gaussian kernel. Note in particular that the first principal component is enough to distinguish the three different groups, which is impossible using only linear PCA, because linear PCA operates only in the given (in this case two-dimensional) space, in which these concentric point clouds are not linearly separable.
Functional principal component analysis (FPCA) is a statistical method for investigating the dominant modes of variation of functional data. Using this method, a random function is represented in the eigenbasis, which is an orthonormal basis of the Hilbert space L 2 that consists of the eigenfunctions of the autocovariance operator .
Sparse principal component analysis (SPCA or sparse PCA) is a technique used in statistical analysis and, in particular, in the analysis of multivariate data sets. It extends the classic method of principal component analysis (PCA) for the reduction of dimensionality of data by introducing sparsity structures to the input variables.
SPSS also prints "Rotation Sums of Squared Loadings" and even for PCA, these eigenvalues will differ from initial and extraction eigenvalues, though their total will be the same. Factor scores Component scores (in PCA) Explained from PCA perspective, not from Factor Analysis perspective. The scores of each case (row) on each factor (column).
In statistics, principal component regression (PCR) is a regression analysis technique that is based on principal component analysis (PCA). PCR is a form of reduced rank regression . [ 1 ] More specifically, PCR is used for estimating the unknown regression coefficients in a standard linear regression model .