Search results
Results From The WOW.Com Content Network
The vector projection (also known as the vector component or vector resolution) of a vector a on (or onto) a nonzero vector b is the orthogonal projection of a onto a straight line parallel to b. The projection of a onto b is often written as proj b a {\displaystyle \operatorname {proj} _{\mathbf {b} }\mathbf {a} } or a ∥ b .
For any point P on M, there is a unique line through N and P, and this line intersects the plane z = 0 in exactly one point P ′, known as the stereographic projection of P onto the plane. In Cartesian coordinates (x, y, z) on the sphere and (X, Y) on the plane, the projection and its inverse are given by the formulas
Note: This page uses common physics notation for spherical coordinates, in which is the angle between the z axis and the radius vector connecting the origin to the point in question, while is the angle between the projection of the radius vector onto the x-y plane and the x axis. Several other definitions are in use, and so care must be taken ...
d is the total horizontal distance travelled by the projectile. v is the velocity at which the projectile is launched; g is the gravitational acceleration—usually taken to be 9.81 m/s 2 (32 f/s 2) near the Earth's surface; θ is the angle at which the projectile is launched; y 0 is the initial height of the projectile
To find the angle giving the maximum height for a given speed calculate the derivative of the maximum height = / with respect to , that is = / which is zero when = / =. So the maximum height H m a x = v 2 2 g {\displaystyle H_{\mathrm {max} }={v^{2} \over 2g}} is obtained when the projectile is fired straight up.
Parallel projection corresponds to a perspective projection with a hypothetical viewpoint; i.e. one where the camera lies an infinite distance away from the object and has an infinite focal length, or "zoom". In parallel projection, the lines of sight from the object to the projection plane are parallel to each other. Thus, lines that are ...
In either the coordinate or vector formulations, one may verify that the given point lies on the given plane by plugging the point into the equation of the plane. To see that it is the closest point to the origin on the plane, observe that p {\displaystyle \mathbf {p} } is a scalar multiple of the vector v {\displaystyle \mathbf {v} } defining ...
Next, two positions are calculated: firstly, the blended velocity and the last known server-side acceleration ´ are used to calculate . This is a position which is projected from the client-side start position P 0 {\displaystyle P_{0}} based on T t {\displaystyle T_{t}} , the time which has passed since the last server update.