When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/Maxwell's_equations

    A separate law of nature, the Lorentz force law, describes how the electric and magnetic fields act on charged particles and currents. By convention, a version of this law in the original equations by Maxwell is no longer included. The vector calculus formalism below, the work of Oliver Heaviside, [6] [7] has become standard.

  3. Divergence theorem - Wikipedia

    en.wikipedia.org/wiki/Divergence_theorem

    Continuity equations offer more examples of laws with both differential and integral forms, related to each other by the divergence theorem. In fluid dynamics , electromagnetism , quantum mechanics , relativity theory , and a number of other fields, there are continuity equations that describe the conservation of mass, momentum, energy ...

  4. List of electromagnetism equations - Wikipedia

    en.wikipedia.org/wiki/List_of_electromagnetism...

    Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal nĚ‚, d is the dipole moment between two point charges, the volume density of these is the polarization density P.

  5. Gauss's law - Wikipedia

    en.wikipedia.org/wiki/Gauss's_law

    In physics (specifically electromagnetism), Gauss's law, also known as Gauss's flux theorem (or sometimes Gauss's theorem), is one of Maxwell's equations. It is an application of the divergence theorem , and it relates the distribution of electric charge to the resulting electric field .

  6. Divergence - Wikipedia

    en.wikipedia.org/wiki/Divergence

    In vector calculus, divergence is a vector operator that operates on a vector field, producing a scalar field giving the quantity of the vector field's source at each point. More technically, the divergence represents the volume density of the outward flux of a vector field from an infinitesimal volume around a given point.

  7. Maxwell's equations in curved spacetime - Wikipedia

    en.wikipedia.org/wiki/Maxwell's_equations_in...

    This equation is completely coordinate- and metric-independent and says that the electromagnetic flux through a closed two-dimensional surface in space–time is topological, more precisely, depends only on its homology class (a generalization of the integral form of Gauss law and Maxwell–Faraday equation, as the homology class in Minkowski ...

  8. Gauss's law for magnetism - Wikipedia

    en.wikipedia.org/wiki/Gauss's_law_for_magnetism

    If magnetic monopoles were to be discovered, then Gauss's law for magnetism would state the divergence of B would be proportional to the magnetic charge density ρ m, analogous to Gauss's law for electric field. For zero net magnetic charge density (ρ m = 0), the original form of Gauss's magnetism law is the result.

  9. Four-gradient - Wikipedia

    en.wikipedia.org/wiki/Four-gradient

    Divergence is a vector operator that produces a signed scalar field giving the quantity of a vector field's source at each point. Note that in this metric signature [+,−,−,−] the 4-Gradient has a negative spatial component.

  1. Related searches what is divergence in electromagnetism law of mass reading answer key 5th

    how to calculate divergencedivergence theorem definition
    divergence theorem pdf