Search results
Results From The WOW.Com Content Network
For example, log 10 10000 = 4, and log 10 0.001 = −3. These are instances of the discrete logarithm problem. Other base-10 logarithms in the real numbers are not instances of the discrete logarithm problem, because they involve non-integer exponents. For example, the equation log 10 53 = 1.724276… means that 10 1.724276… = 53.
The discrete logarithm algorithm and the factoring algorithm are instances of the period-finding algorithm, and all three are instances of the hidden subgroup problem. On a quantum computer, to factor an integer N {\displaystyle N} , Shor's algorithm runs in polynomial time , meaning the time taken is polynomial in log N {\displaystyle \log ...
Here, "quickly" means an algorithm that solves the task and runs in polynomial time (as opposed to, say, exponential time) exists, meaning the task completion time is bounded above by a polynomial function on the size of the input to the algorithm. The general class of questions that some algorithm can answer in polynomial time is "P" or "class ...
Here, complexity refers to the time complexity of performing computations on a multitape Turing machine. [1] See big O notation for an explanation of the notation used. Note: Due to the variety of multiplication algorithms, () below stands in for the complexity of the chosen multiplication algorithm.
[2] [3] Some problems that are considered good candidates for being NP-intermediate are the graph isomorphism problem, and decision versions of factoring and the discrete logarithm. Under the exponential time hypothesis, there exist natural problems that require quasi-polynomial time, and can be solved in that time, including finding a large ...
In computer science, polylogarithmic functions occur as the order of time for some data structure operations. Additionally, the exponential function of a polylogarithmic function produces a function with quasi-polynomial growth, and algorithms with this as their time complexity are said to take quasi-polynomial time. [2]
Can graphs of bounded clique-width be recognized in polynomial time? [1] Can one find a simple closed quasigeodesic on a convex polyhedron in polynomial time? [2] Can a simultaneous embedding with fixed edges for two given graphs be found in polynomial time? [3] Can the square-root sum problem be solved in polynomial time in the Turing machine ...
Karmarkar's algorithm is an algorithm introduced by Narendra Karmarkar in 1984 for solving linear programming problems. It was the first reasonably efficient algorithm that solves these problems in polynomial time. The ellipsoid method is also polynomial time but proved to be inefficient in practice.