Search results
Results From The WOW.Com Content Network
For simplicity in calculations it is often convenient to consider a surface perpendicular to the flux lines. If the electric field is uniform, the electric flux passing through a surface of vector area A is = = , where E is the electric field (having the unit V/m), E is its magnitude, A is the area of the surface, and θ is the angle between ...
Jefimenko says, "...neither Maxwell's equations nor their solutions indicate an existence of causal links between electric and magnetic fields. Therefore, we must conclude that an electromagnetic field is a dual entity always having an electric and a magnetic component simultaneously created by their common sources: time-variable electric ...
Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal n̂, d is the dipole moment between two point charges, the volume density of these is the polarization density P.
The net electric flux Φ E is the surface integral of the electric field E passing through Σ: =, The net electric current I is the surface integral of the electric current density J passing through Σ : I = ∬ Σ J ⋅ d S , {\displaystyle I=\iint _{\Sigma }\mathbf {J} \cdot \mathrm {d} \mathbf {S} ,} where d S denotes the differential vector ...
For example, a nearby conductive surface will exert a drag force on a moving magnet that opposes its motion, due to eddy currents induced in the surface by the moving magnetic field. This effect is employed in eddy current brakes which are used to stop rotating power tools quickly when they are turned off.
In physics, the electric displacement field (denoted by D), also called electric flux density, is a vector field that appears in Maxwell's equations. It accounts for the electromagnetic effects of polarization and that of an electric field , combining the two in an auxiliary field .
No charge is enclosed by the sphere. Electric flux through its surface is zero. Gauss's law may be expressed as: [6] = where Φ E is the electric flux through a closed surface S enclosing any volume V, Q is the total charge enclosed within V, and ε 0 is the electric constant.
For example, dielectric absorption refers to the inability of a capacitor that has been charged for a long time to completely discharge when briefly discharged. Although an ideal capacitor would remain at zero volts after being discharged, real capacitors will develop a small voltage, a phenomenon that is also called soakage or battery action .