Search results
Results From The WOW.Com Content Network
If the electric field is uniform, the electric flux passing through a surface of vector area A is = = , where E is the electric field (having the unit V/m), E is its magnitude, A is the area of the surface, and θ is the angle between the electric field lines and the normal (perpendicular) to A.
The electric field is perpendicular, locally, to the equipotential surface of the conductor, and zero inside; its flux πa 2 ·E, by Gauss's law equals πa 2 ·σ/ε 0. Thus, σ = ε 0 E. In problems involving conductors set at known potentials, the potential away from them is obtained by solving Laplace's equation, either analytically or ...
Lorentz force on a charged particle (of charge q) in motion (velocity v), used as the definition of the E field and B field. Here subscripts e and m are used to differ between electric and magnetic charges. The definitions for monopoles are of theoretical interest, although real magnetic dipoles can be described using pole strengths.
In the important case that E(t) is sinusoidally varying at some frequency with peak amplitude E peak, E rms is /, with the average Poynting vector then given by: =. This is the most common form for the energy flux of a plane wave, since sinusoidal field amplitudes are most often expressed in terms of their peak values, and complicated problems ...
Bottom: Field line through a curved surface, showing the setup of the unit normal and surface element to calculate flux. To calculate the flux of a vector field F (red arrows) through a surface S the surface is divided into small patches dS. The flux through each patch is equal to the normal (perpendicular) component of the field, the dot ...
E is the electric field, and; B is the magnetic field. The two equations for the EMF are, firstly, the work per unit charge done against the Lorentz force in moving a test charge around the (possibly moving) surface boundary ∂Σ and, secondly, as the change of magnetic flux through the open surface Σ.
The multipole expansion circumvents this difficulty by expanding not E or B, but r ⋅ E or r ⋅ B into spherical harmonics. These expansions still solve the original Helmholtz equations for E and B because for a divergence-free field F, ∇ 2 (r ⋅ F) = r ⋅ (∇ 2 F). The resulting expressions for a generic electromagnetic field are:
In physics, the electric displacement field (denoted by D), also called electric flux density, is a vector field that appears in Maxwell's equations. It accounts for the electromagnetic effects of polarization and that of an electric field , combining the two in an auxiliary field .