Search results
Results From The WOW.Com Content Network
graph with an example of steps in a failure mode and effects analysis. Failure mode and effects analysis (FMEA; often written with "failure modes" in plural) is the process of reviewing as many components, assemblies, and subsystems as possible to identify potential failure modes in a system and their causes and effects.
FMEA is a bottom-up, inductive analytical method which may be performed at either the functional or piece-part level. FMECA extends FMEA by including a criticality analysis, which is used to chart the probability of failure modes against the severity of their consequences. The result highlights failure modes with relatively high probability and ...
The initial FMEDA added additional information to the FMEA process. The first piece of information added in an FMEDA is the quantitative failure data (failure rates and the distribution of failure modes) for all components being analyzed.
The analysis for DRBFM is modeled after a linkage between a good design review and FMEA. A comprehensive, well-done FMEA can be considered one of the inputs (plus many other preparations sheets defined in the methodology) to decide the scope of a DRBFM but an FMEA is not required since the focus is based on the changes and interfaces.
Advanced product quality planning (APQP) is a framework of procedures and techniques used to develop products in industry, particularly in the automotive industry.It differs from Six Sigma in that the goal of Six Sigma is to reduce variation but has similarities to Design for Six Sigma (DFSS).
A fault tree diagram. Fault tree analysis (FTA) is a type of failure analysis in which an undesired state of a system is examined. This analysis method is mainly used in safety engineering and reliability engineering to understand how systems can fail, to identify the best ways to reduce risk and to determine (or get a feeling for) event rates of a safety accident or a particular system level ...
International Automotive Task Force 16949 (IATF 16949) is an international standard for automotive management systems that is a widely adopted and standardized quality management system for the automotive sector.
Failure Mode and Effects Analysis (FMEA) is a bottom-up, inductive analytical method which may be performed at either the functional or piece-part level. For functional FMEA, failure modes are identified for each function in a system or equipment item, usually with the help of a functional block diagram. For piece-part FMEA, failure modes are ...