Search results
Results From The WOW.Com Content Network
Hasse diagram of a complemented lattice. A point p and a line l of the Fano plane are complements if and only if p does not lie on l.. In the mathematical discipline of order theory, a complemented lattice is a bounded lattice (with least element 0 and greatest element 1), in which every element a has a complement, i.e. an element b satisfying a ∨ b = 1 and a ∧ b = 0.
A lattice is an abstract structure studied in the mathematical subdisciplines of order theory and abstract algebra.It consists of a partially ordered set in which every pair of elements has a unique supremum (also called a least upper bound or join) and a unique infimum (also called a greatest lower bound or meet).
An orthocomplemented lattice is complemented. (def) 8. A complemented lattice is bounded. (def) 9. An algebraic lattice is complete. (def) 10. A complete lattice is bounded. 11. A heyting algebra is bounded. (def) 12. A bounded lattice is a lattice. (def) 13. A heyting algebra is residuated. 14. A residuated lattice is a lattice. (def) 15. A ...
The lattice L itself is called a pseudocomplemented lattice if every element of L is pseudocomplemented. Every pseudocomplemented lattice is necessarily bounded , i.e. it has a 1 as well. Since the pseudocomplement is unique by definition (if it exists), a pseudocomplemented lattice can be endowed with a unary operation * mapping every element ...
In mathematics, a complete lattice is a partially ordered set in which all subsets have both a supremum and an infimum . A conditionally complete lattice satisfies at least one of these properties for bounded subsets. For comparison, in a general lattice, only pairs of elements need to have a supremum and an infimum. Every non-empty finite ...
Every interval of a geometric lattice (the subset of the lattice between given lower and upper bound elements) is itself geometric; taking an interval of a geometric lattice corresponds to forming a minor of the associated matroid. Geometric lattices are complemented, and because of the interval property they are also relatively complemented. [7]
Groups whose lattice of subgroups is a complemented lattice are called complemented groups (Zacher 1953), and groups whose lattice of subgroups are modular lattices are called Iwasawa groups or modular groups (Iwasawa 1941). Lattice-theoretic characterizations of this type also exist for solvable groups and perfect groups (Suzuki 1951).
The following table gives the crystalline structure of the most thermodynamically stable form(s) for elements that are solid at standard temperature and pressure. Each element is shaded by a color representing its respective Bravais lattice, except that all orthorhombic lattices are grouped together.