Ads
related to: alkyl shifts examples biology equation practice test printable
Search results
Results From The WOW.Com Content Network
Thermal alkyl [1,3] shifts, similar to [1,3] hydride shifts, must proceed antarafacially. Here the geometry of the transition state is prohibitive, but an alkyl group , due to the nature of its orbitals, can invert its geometry, form a new bond with the back lobe of its sp 3 orbital, and therefore proceed via a suprafacial shift.
The actual mechanism of alkyl groups moving, as in Wagner–Meerwein rearrangement, probably involves transfer of the moving alkyl group fluidly along a bond, not ionic bond-breaking and forming. In pericyclic reactions, explanation by orbital interactions give a better picture than simple discrete electron transfers. It is, nevertheless ...
A 1,2-rearrangement or 1,2-migration or 1,2-shift or Whitmore 1,2-shift [1] is an organic reaction where a substituent moves from one atom to another atom in a chemical compound. In a 1,2 shift the movement involves two adjacent atoms but moves over larger distances are possible. In the example below the substituent R moves from carbon atom C 2 ...
In chemistry, alkyl is a group, a substituent, that is attached to other molecular fragments. For example, alkyl lithium reagents have the empirical formula Li(alkyl), where alkyl = methyl, ethyl, etc. A dialkyl ether is an ether with two alkyl groups, e.g., diethyl ether O(CH 2 CH 3) 2.
When a pinacol is not symmetrical, there is a choice for which hydroxyl group will leave and which alkyl shift will occur. The selectivity will be determined by the stability of the carbocations. In this case although both choices are tertiary, the phenyl groups result in significantly higher stabilization of the positive charge through resonance.
A Wagner–Meerwein rearrangement is a class of carbocation 1,2-rearrangement reactions in which a hydrogen, alkyl or aryl group migrates from one carbon to a neighboring carbon. [ 1 ] [ 2 ] They can be described as cationic [1,2]- sigmatropic rearrangements, proceeding suprafacially and with stereochemical retention.
The Hofmann rearrangement (Hofmann degradation) is the organic reaction of a primary amide to a primary amine with one less carbon atom. [1] [2] [3] The reaction involves oxidation of the nitrogen followed by rearrangement of the carbonyl and nitrogen to give an isocyanate intermediate.
Thermolysis converts 1 to (E,E) geometric isomer 2, but 3 to (E,Z) isomer 4.. The Woodward–Hoffmann rules (or the pericyclic selection rules) [1] are a set of rules devised by Robert Burns Woodward and Roald Hoffmann to rationalize or predict certain aspects of the stereochemistry and activation energy of pericyclic reactions, an important class of reactions in organic chemistry.
Ad
related to: alkyl shifts examples biology equation practice test printable