Search results
Results From The WOW.Com Content Network
A simple and inefficient way to see where one string occurs inside another is to check at each index, one by one. First, we see if there is a copy of the needle starting at the first character of the haystack; if not, we look to see if there's a copy of the needle starting at the second character of the haystack, and so forth.
In text processing, a proximity search looks for documents where two or more separately matching term occurrences are within a specified distance, where distance is the number of intermediate words or characters. In addition to proximity, some implementations may also impose a constraint on the word order, in that the order in the searched text ...
The Galil rule, in its original version, is only effective for versions that output multiple matches. It updates the substring range only on c = 0, i.e. a full match. A generalized version for dealing with submatches was reported in 1985 as the Apostolico–Giancarlo algorithm. [8]
When an exact match cannot be found in the TM database for the text being translated, there is an option to search for a match that is less than exact; the translator sets the threshold of the fuzzy match to a percentage value less than 100%, and the database will then return any matches in its memory corresponding to that percentage.
The closeness of a match is measured in terms of the number of primitive operations necessary to convert the string into an exact match. This number is called the edit distance between the string and the pattern. The usual primitive operations are: [1] insertion: cot → coat; deletion: coat → cot; substitution: coat → cost
Maximal matches [4] Grammar-based distance [5] TFIDF distance metric [6] There also exist functions which measure a dissimilarity between strings, but do not necessarily fulfill the triangle inequality, and as such are not metrics in the mathematical sense. An example of such function is the Jaro–Winkler distance.
In computer science, an algorithm for matching wildcards (also known as globbing) is useful in comparing text strings that may contain wildcard syntax. [1] Common uses of these algorithms include command-line interfaces, e.g. the Bourne shell [2] or Microsoft Windows command-line [3] or text editor or file manager, as well as the interfaces for some search engines [4] and databases. [5]
A symbol prepended to _ binds the match to that variable name while a symbol appended to _ restricts the matches to nodes of that symbol. Note that even blanks themselves are internally represented as Blank[] for _ and Blank[x] for _x. The Mathematica function Cases filters elements of the first argument that match the pattern in the second ...