Search results
Results From The WOW.Com Content Network
An endergonic reaction (such as photosynthesis) is a reaction that requires energy to be driven. Endergonic means "absorbing energy in the form of work." The activation energy for the reaction is typically larger than the overall energy of the exergonic reaction (1). Endergonic reactions are nonspontaneous.
An endergonic reaction is an anabolic chemical reaction that consumes energy. [3] It is the opposite of an exergonic reaction. It has a positive ΔG because it takes more energy to break the bonds of the reactant than the energy of the products offer, i.e. the products have weaker bonds than the reactants.
The reaction will only be allowed if the total entropy change of the universe is zero or positive. This is reflected in a negative ΔG, and the reaction is called an exergonic process. If two chemical reactions are coupled, then an otherwise endergonic reaction (one with positive ΔG) can be made to happen.
In nuclear physics, beta decay is a type of radioactive decay in which a beta ray (fast energetic electron or positron) and a neutrino are emitted from an atomic nucleus. Electron capture is sometimes called inverse beta decay , though this term usually refers to the interaction of an electron antineutrino with a proton.
Polymerization, an anabolic pathway used to build macromolecules such as nucleic acids, proteins, and polysaccharides, uses condensation reactions to join monomers. [4] Macromolecules are created from smaller molecules using enzymes and cofactors. Use of ATP to drive the endergonic process of anabolism.
An electron transport chain (ETC [1]) is a series of protein complexes and other molecules which transfer electrons from electron donors to electron acceptors via redox reactions (both reduction and oxidation occurring simultaneously) and couples this electron transfer with the transfer of protons (H + ions) across a membrane.
Negative cooperativity means that the opposite will be true; as ligands bind to the protein, the protein's affinity for the ligand will decrease, i.e. it becomes less likely for the ligand to bind to the protein. An example of this occurring is the relationship between glyceraldehyde-3-phosphate and the enzyme glyceraldehyde-3-phosphate ...
The change of Gibbs free energy (ΔG) in an exergonic reaction (that takes place at constant pressure and temperature) is negative because energy is lost (2). In chemical thermodynamics, an exergonic reaction is a chemical reaction where the change in the free energy is negative (there is a net release of free energy). [1]