Ads
related to: interpret vs evaluate data analysis in statistics 1 3 6
Search results
Results From The WOW.Com Content Network
Data analysis is the process of inspecting, cleansing, transforming, and modeling data with the goal of discovering useful information, informing conclusions, and supporting decision-making. [1] Data analysis has multiple facets and approaches, encompassing diverse techniques under a variety of names, and is used in different business, science ...
The scope of the discipline of statistics broadened in the early 19th century to include the collection and analysis of data in general. Today, statistics is widely employed in government, business, and natural and social sciences. Carl Friedrich Gauss made major contributions to probabilistic methods leading to statistics.
Tukey defined data analysis in 1961 as: "Procedures for analyzing data, techniques for interpreting the results of such procedures, ways of planning the gathering of data to make its analysis easier, more precise or more accurate, and all the machinery and results of (mathematical) statistics which apply to analyzing data." [3] Exploratory data ...
The positive predictive value (PPV), or precision, is defined as = + = where a "true positive" is the event that the test makes a positive prediction, and the subject has a positive result under the gold standard, and a "false positive" is the event that the test makes a positive prediction, and the subject has a negative result under the gold standard.
Statistical literacy is the ability to understand and reason with statistics and data. The abilities to understand and reason with data, or arguments that use data, are necessary for citizens to understand material presented in publications such as newspapers, television, and the Internet.
Analytics is the systematic computational analysis of data or statistics. [1] It is used for the discovery, interpretation, and communication of meaningful patterns in data, which also falls under and directly relates to the umbrella term, data science. [2] Analytics also entails applying data patterns toward effective decision-making.
The MAE is conceptually simpler and also easier to interpret than RMSE: it is simply the average absolute vertical or horizontal distance between each point in a scatter plot and the Y=X line. In other words, MAE is the average absolute difference between X and Y.
As statistics and data sets have become more complex, [a] [b] questions have arisen regarding the validity of models and the inferences drawn from them. There is a wide range of conflicting opinions on modelling. Models can be based on scientific theory or ad hoc data analysis, each employing different methods. Advocates exist for each approach ...