Search results
Results From The WOW.Com Content Network
In logical argument and mathematical proof, the therefore sign, ∴, is generally used before a logical consequence, such as the conclusion of a syllogism. The symbol consists of three dots placed in an upright triangle and is read therefore. While it is not generally used in formal writing, it is used in mathematics and shorthand.
Therefore (Mathematical symbol for "therefore" is ), if it rains today, we will go on a canoe trip tomorrow". To make use of the rules of inference in the above table we let p {\displaystyle p} be the proposition "If it rains today", q {\displaystyle q} be "We will not go on a canoe today" and let r {\displaystyle r} be "We will go on a canoe ...
The following table lists many common symbols, together with their name, how they should be read out loud, and the related field of mathematics. Additionally, the subsequent columns contains an informal explanation, a short example, the Unicode location, the name for use in HTML documents, [1] and the LaTeX symbol.
Therefore, not P. The first premise is a conditional ("if-then") claim, such as P implies Q. The second premise is an assertion that Q, the consequent of the conditional claim, is not the case. From these two premises it can be logically concluded that P, the antecedent of the conditional claim, is also not the case. For example:
Therefore, Coco is a dog. Denying the antecedent All cats are animals. Missy is not a cat. Therefore, Missy is not an animal. A logical argument, seen as an ordered set of sentences, has a logical form that derives from the form of its constituent sentences; the logical form of an argument is sometimes called argument form. [6]
The second is a link to the article that details that symbol, using its Unicode standard name or common alias. (Holding the mouse pointer on the hyperlink will pop up a summary of the symbol's function.); The third gives symbols listed elsewhere in the table that are similar to it in meaning or appearance, or that may be confused with it;
In propositional logic, affirming the consequent (also known as converse error, fallacy of the converse, or confusion of necessity and sufficiency) is a formal fallacy (or an invalid form of argument) that is committed when, in the context of an indicative conditional statement, it is stated that because the consequent is true, therefore the ...
Enderton, for example, observes that "modus ponens can produce shorter formulas from longer ones", [9] and Russell observes that "the process of the inference cannot be reduced to symbols. Its sole record is the occurrence of ⊦q [the consequent] ... an inference is the dropping of a true premise; it is the dissolution of an implication".