Search results
Results From The WOW.Com Content Network
Archaeological materials, such as bone, organic residues, hair, or sea shells, can serve as substrates for isotopic analysis. Carbon, nitrogen and zinc isotope ratios are used to investigate the diets of past people; these isotopic systems can be used with others, such as strontium or oxygen, to answer questions about population movements and cultural interactions, such as trade.
Many other isotopes have been used in specialized radiopharmacological studies. The most widely used is 67 Ga for gallium scans. 67 Ga is used because, like 99m Tc, it is a gamma-ray emitter and various ligands can be attached to the Ga 3+ ion, forming a coordination complex which may have selective affinity for particular sites in the human body.
This is a list of radioactive nuclides (sometimes also called isotopes), ordered by half-life from shortest to longest, in seconds, minutes, hours, days and years. Current methods make it difficult to measure half-lives between approximately 10 −19 and 10 −10 seconds.
A nuclide is a species of an atom with a specific number of protons and neutrons in the nucleus, for example, carbon-13 with 6 protons and 7 neutrons. The nuclide concept (referring to individual nuclear species) emphasizes nuclear properties over chemical properties, whereas the isotope concept (grouping all atoms of each element) emphasizes chemical over nuclear.
Overall, Zn isotope ratios in microbes appear to be driven by a number of complex factors including surface interactions, bacterial metal metabolism and metal speciation, but by understanding the relative contributions of these factors to Zn isotope signals, one can use Zn isotopes to investigate metal-binding pathways operating in natural ...
Federal and state nuclear regulatory agencies keep records of the radionuclides used. [4] As of 2003 the isotopes Antimony-124, argon-41, cobalt-60, iodine-131, iridium-192, lanthanum-140, manganese-56, scandium-46, sodium-24, silver-110m, technetium-99m, and xenon-133 were most commonly used by the oil and gas industry because they are easily ...
This step has an isotope effect, because the rate of protium transfer from formate to NAD+ is nearly three times faster than the rate of the same reaction with a deuterium transfer. This is also an example of a primary isotope effect. [4] A primary isotope effect is one in which the rare isotope is substituted where a bond is broken or formed.
Sulfur has four stable isotopes, 32 S, 33 S, 34 S, and 36 S, of which 32 S is the most abundant by a large margin due to the fact it is created by the very common 12 C in supernovas. Sulfur isotope ratios are almost always expressed as ratios relative to 32 S due to this major relative abundance (95.0%).