Search results
Results From The WOW.Com Content Network
When silicon (Si), having four valence electrons, is doped with elements from group III of the periodic table, such as boron (B) and aluminium (Al), both having three valence electrons, a p-type semiconductor is formed. These dopant elements represent trivalent impurities. Other trivalent dopants include indium (In) and gallium (Ga). [1]
A compound semiconductor is a semiconductor compound composed of chemical elements of at least two different species. These semiconductors form for example in periodic table groups 13–15 (old groups III–V), for example of elements from the Boron group (old group III, boron, aluminium, gallium, indium) and from group 15 (old group V, nitrogen, phosphorus, arsenic, antimony, bismuth).
This also includes water, potentially producing silicon dioxide, chlorine, hydrogen, hydrogen chloride (and its aqueous form hydrochloric acid), and heat. Trichlorosilane can cause hazardous chemical reactions with moisture and humidity alone, and should be handled and stored under inert gas . [ 8 ]
Doping of a pure silicon array. Silicon based intrinsic semiconductor becomes extrinsic when impurities such as boron and antimony are introduced.. In semiconductor production, doping is the intentional introduction of impurities into an intrinsic (undoped) semiconductor for the purpose of modulating its electrical, optical and structural properties.
The conductivity of semiconductors may easily be modified by introducing impurities into their crystal lattice. The process of adding controlled impurities to a semiconductor is known as doping. The amount of impurity, or dopant, added to an intrinsic (pure) semiconductor varies its level of conductivity. [26]
An extrinsic semiconductor is one that has been doped; during manufacture of the semiconductor crystal a trace element or chemical called a doping agent has been incorporated chemically into the crystal, for the purpose of giving it different electrical properties than the pure semiconductor crystal, which is called an intrinsic semiconductor.
In physical chemistry and engineering, passivation is coating a material so that it becomes "passive", that is, less readily affected or corroded by the environment. . Passivation involves creation of an outer layer of shield material that is applied as a microcoating, created by chemical reaction with the base material, or allowed to build by spontaneous oxidation
In semiconductor physics, a donor is a dopant atom that, when added to a semiconductor, can form a n-type region. Phosphorus atom acting as a donor in the simplified 2D silicon lattice. For example, when silicon (Si), having four valence electrons , is to be doped as a n-type semiconductor , elements from group V like phosphorus (P) or arsenic ...