Search results
Results From The WOW.Com Content Network
In computer science, a k-d tree (short for k-dimensional tree) is a space-partitioning data structure for organizing points in a k-dimensional space. K-dimensional is that which concerns exactly k orthogonal axes or a space of any number of dimensions. [1] k-d trees are a useful data structure for several applications, such as:
The tree resolution and overall size is bounded by the pixel and image sizes. A region quadtree may also be used as a variable resolution representation of a data field. For example, the temperatures in an area may be stored as a quadtree, with each leaf node storing the average temperature over the subregion it represents.
The key feature of the BIH is the storage of 2 planes per node (as opposed to 1 for the kd tree and 6 for an axis aligned bounding box hierarchy), which allows for overlapping children (just like a BVH), but at the same time featuring an order on the children along one dimension/axis (as it is the case for kd trees).
An octree is a tree data structure in which each internal node has exactly eight children. Octrees are most often used to partition a three-dimensional space by recursively subdividing it into eight octants. Octrees are the three-dimensional analog of quadtrees. The word is derived from oct (Greek root meaning "eight") + tree.
A BSP tree is traversed in a linear time, in an order determined by the particular function of the tree. Again using the example of rendering double-sided polygons using the painter's algorithm, to draw a polygon P correctly requires that all polygons behind the plane P lies in must be drawn first, then polygon P , then finally the polygons in ...
This page was last edited on 13 June 2011, at 20:46 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may ...
This approach effectively converts the data structure from an augmented binary tree to an augmented kd-tree, thus significantly complicating the balancing algorithms for insertions and deletions. A simpler solution is to use nested interval trees. First, create a tree using the ranges for the y-coordinate.
There are three primary categories of tree construction methods: top-down, bottom-up, and insertion methods. Top-down methods proceed by partitioning the input set into two (or more) subsets, bounding them in the chosen bounding volume, then keep partitioning (and bounding) recursively until each subset consists of only a single primitive (leaf nodes are reached).