Search results
Results From The WOW.Com Content Network
This exact rule is known as the Gauss–Legendre quadrature rule. The quadrature rule will only be an accurate approximation to the integral above if f (x) is well-approximated by a polynomial of degree 2n − 1 or less on [−1, 1]. The Gauss–Legendre quadrature rule is not typically used for integrable functions with endpoint singularities ...
It is assumed that the value of a function f defined on [,] is known at + equally spaced points: < < <.There are two classes of Newton–Cotes quadrature: they are called "closed" when = and =, i.e. they use the function values at the interval endpoints, and "open" when > and <, i.e. they do not use the function values at the endpoints.
Gauss–Legendre quadrature is optimal in a very narrow sense for computing integrals of a function f over [−1, 1], since no other quadrature rule integrates all degree 2n − 1 polynomials exactly when using n sample points. However, this measure of accuracy is not generally a very useful one---polynomials are very simple to integrate and ...
Simpson's rule, which is based on a polynomial of order 2, is also a Newton–Cotes formula. Quadrature rules with equally spaced points have the very convenient property of nesting. The corresponding rule with each interval subdivided includes all the current points, so those integrand values can be re-used.
Gauss–Laguerre quadrature — extension of Gaussian quadrature for integrals with weight exp(−x) on [0, ∞] Gauss–Kronrod quadrature formula — nested rule based on Gaussian quadrature; Gauss–Kronrod rules; Tanh-sinh quadrature — variant of Gaussian quadrature which works well with singularities at the end points
Gauss–Kronrod formulas are extensions of the Gauss quadrature formulas generated by adding + points to an -point rule in such a way that the resulting rule is exact for polynomials of degree less than or equal to + (Laurie (1997, p. 1133); the corresponding Gauss rule is of order ).
A sample space is usually denoted using set notation, and the possible ordered outcomes, or sample points, [5] are listed as elements in the set. It is common to refer to a sample space by the labels S, Ω, or U (for "universal set"). The elements of a sample space may be numbers, words, letters, or symbols.
One approach consists of using point sets from other quadrature rules. For example, taking independent and identically distributed realisations from ν {\displaystyle \nu } recovers a Bayesian approach to Monte Carlo , [ 3 ] whereas using certain deterministic point sets such as low-discrepancy sequences or lattices recovers a Bayesian ...