When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Gaussian quadrature - Wikipedia

    en.wikipedia.org/wiki/Gaussian_quadrature

    This exact rule is known as the Gauss–Legendre quadrature rule. The quadrature rule will only be an accurate approximation to the integral above if f (x) is well-approximated by a polynomial of degree 2n − 1 or less on [−1, 1]. The Gauss–Legendre quadrature rule is not typically used for integrable functions with endpoint singularities ...

  3. Newton–Cotes formulas - Wikipedia

    en.wikipedia.org/wiki/Newton–Cotes_formulas

    It is assumed that the value of a function f defined on [,] is known at + equally spaced points: < < <.There are two classes of Newton–Cotes quadrature: they are called "closed" when = and =, i.e. they use the function values at the interval endpoints, and "open" when > and <, i.e. they do not use the function values at the endpoints.

  4. Numerical integration - Wikipedia

    en.wikipedia.org/wiki/Numerical_integration

    If we allow the intervals between interpolation points to vary, we find another group of quadrature formulas, such as the Gaussian quadrature formulas. A Gaussian quadrature rule is typically more accurate than a Newton–Cotes rule that uses the same number of function evaluations, if the integrand is smooth (i.e., if it is sufficiently ...

  5. Gauss–Legendre quadrature - Wikipedia

    en.wikipedia.org/wiki/Gauss–Legendre_quadrature

    Carl Friedrich Gauss was the first to derive the Gauss–Legendre quadrature rule, doing so by a calculation with continued fractions in 1814. [4] He calculated the nodes and weights to 16 digits up to order n=7 by hand. Carl Gustav Jacob Jacobi discovered the connection between the quadrature rule and the orthogonal family of Legendre polynomials.

  6. List of numerical analysis topics - Wikipedia

    en.wikipedia.org/wiki/List_of_numerical_analysis...

    Gauss–Laguerre quadrature — extension of Gaussian quadrature for integrals with weight exp(−x) on [0, ∞] Gauss–Kronrod quadrature formula — nested rule based on Gaussian quadrature; Gauss–Kronrod rules; Tanh-sinh quadrature — variant of Gaussian quadrature which works well with singularities at the end points

  7. Gauss–Kronrod quadrature formula - Wikipedia

    en.wikipedia.org/wiki/Gauss–Kronrod_quadrature...

    Gauss–Kronrod formulas are extensions of the Gauss quadrature formulas generated by adding + points to an -point rule in such a way that the resulting rule is exact for polynomials of degree less than or equal to + (Laurie (1997, p. 1133); the corresponding Gauss rule is of order ).

  8. Chebyshev–Gauss quadrature - Wikipedia

    en.wikipedia.org/wiki/Chebyshev–Gauss_quadrature

    In numerical analysis Chebyshev–Gauss quadrature is an extension of Gaussian quadrature method for approximating the value of integrals of the following kind: ∫ − 1 + 1 f ( x ) 1 − x 2 d x {\displaystyle \int _{-1}^{+1}{\frac {f(x)}{\sqrt {1-x^{2}}}}\,dx}

  9. Bayesian quadrature - Wikipedia

    en.wikipedia.org/wiki/Bayesian_quadrature

    One approach consists of using point sets from other quadrature rules. For example, taking independent and identically distributed realisations from ν {\displaystyle \nu } recovers a Bayesian approach to Monte Carlo , [ 3 ] whereas using certain deterministic point sets such as low-discrepancy sequences or lattices recovers a Bayesian ...