Search results
Results From The WOW.Com Content Network
A rotational slump occurs when a slump block, composed of sediment or rock, slides along a concave-upward slip surface with rotation about an axis parallel to the slope. [3] Rotational movement causes the original surface of the block to become less steep, and the top of the slump is rotated backward.
Tilted block faulting, also called rotational block faulting, is a mode of structural evolution in extensional tectonic events, a result of tectonic plates stretching apart. [ 1 ] [ 2 ] When the upper lithospheric crust experiences extensional pressures, the brittle crust fractures, creating detachment faults . [ 3 ]
It can also be significant in coastal areas when sea level falls after a storm tide, or when the water level of a reservoir or even a natural lake rapidly falls. The most famous example of this is the Vajont failure, when a rapid decline in lake level contributed to the occurrence of a landslide that killed over 2000 people. Numerous huge ...
Slides are also sub-classified by the form of the surface(s) or shear zone(s) on which movement happens. The planes may be broadly parallel to the surface ("planar slides") or spoon-shaped ("rotational slides"). Slides can occur catastrophically, but movement on the surface can also be gradual and progressive.
Talus cones produced by mass moving, north shore of Isfjord, Svalbard, Norway Mass wasting at Palo Duro Canyon, West Texas (2002) A rockfall in Grand Canyon National Park. Mass wasting, also known as mass movement, [1] is a general term for the movement of rock or soil down slopes under the force of gravity.
Rotational components of strong ground motions refer to variations of the natural slope of the ground surface due to the propagation of seismic waves. [1] Earthquakes induce three translational (two horizontal and one vertical) and three rotational (two rocking and one torsional ) motions on the ground surface.
A river bank can be divided into three zones: Toe zone, bank zone, and overbank area. The toe zone is the area which is most susceptible to erosion. [2] Because it is located in between the ordinary water level and the low water level, it is strongly affected by currents and erosional events. [2]
Model forecast of Hurricane Mitch created by the Geophysical Fluid Dynamics Laboratory.The arrows are wind vectors and the grey shading indicates an equivalent potential temperature surface that highlights the surface inflow layer and eyewall region.