When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Residual neural network - Wikipedia

    en.wikipedia.org/wiki/Residual_neural_network

    A residual neural network (also referred to as a residual network or ResNet) [1] is a deep learning architecture in which the layers learn residual functions with reference to the layer inputs. It was developed in 2015 for image recognition , and won the ImageNet Large Scale Visual Recognition Challenge ( ILSVRC ) of that year.

  3. Data structure - Wikipedia

    en.wikipedia.org/wiki/Data_structure

    A data structure known as a hash table.. In computer science, a data structure is a data organization and storage format that is usually chosen for efficient access to data. [1] [2] [3] More precisely, a data structure is a collection of data values, the relationships among them, and the functions or operations that can be applied to the data, [4] i.e., it is an algebraic structure about data.

  4. List of data structures - Wikipedia

    en.wikipedia.org/wiki/List_of_data_structures

    This is a list of well-known data structures. For a wider list of terms, see list of terms relating to algorithms and data structures. For a comparison of running times for a subset of this list see comparison of data structures.

  5. Inception (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Inception_(deep_learning...

    This was later solved by the ResNet architecture. The architecture consists of three parts stacked on top of one another: [2] The stem (data ingestion): The first few convolutional layers perform data preprocessing to downscale images to a smaller size. The body (data processing): The next many Inception modules perform the bulk of data processing.

  6. List of terms relating to algorithms and data structures

    en.wikipedia.org/wiki/List_of_terms_relating_to...

    The NIST Dictionary of Algorithms and Data Structures [1] is a reference work maintained by the U.S. National Institute of Standards and Technology. It defines a large number of terms relating to algorithms and data structures. For algorithms and data structures not necessarily mentioned here, see list of algorithms and list of data structures.

  7. Q-learning - Wikipedia

    en.wikipedia.org/wiki/Q-learning

    Q-learning is a model-free reinforcement learning algorithm that teaches an agent to assign values to each action it might take, conditioned on the agent being in a particular state. It does not require a model of the environment (hence "model-free"), and it can handle problems with stochastic transitions and rewards without requiring adaptations.

  8. AlexNet - Wikipedia

    en.wikipedia.org/wiki/AlexNet

    It was a minority position in computer vision that features can be learned directly from data, a position which became dominant after AlexNet. [ 17 ] In 2011, Geoffrey Hinton started reaching out to colleagues about "What do I have to do to convince you that neural networks are the future?", and Jitendra Malik , a sceptic of neural networks ...

  9. U-Net - Wikipedia

    en.wikipedia.org/wiki/U-Net

    U-Net is a convolutional neural network that was developed for image segmentation. [1] The network is based on a fully convolutional neural network [2] whose architecture was modified and extended to work with fewer training images and to yield more precise segmentation.