Ad
related to: how to find lepton numbersearch.peoplefinders.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
In particle physics, lepton number (historically also called lepton charge) [1] is a conserved quantum number representing the difference between the number of leptons and the number of antileptons in an elementary particle reaction. [2]
All leptons carry a lepton number L = 1. In addition, leptons carry weak isospin , T 3 , which is − 1 / 2 for the three charged leptons (i.e. electron , muon and tau ) and + 1 / 2 for the three associated neutrinos .
In particle physics, a lepton is an elementary particle of half-integer spin (spin 1 / 2 ) that does not undergo strong interactions. [1] Two main classes of leptons exist: charged leptons (also known as the electron-like leptons or muons), including the electron, muon, and tauon, and neutral leptons, better known as neutrinos.
Similarly, the muons and their neutrinos are assigned a muon number of +1 and the tau leptons are assigned a tau lepton number of +1. The Standard Model predicts that each of these three numbers should be conserved separately in a manner similar to the way baryon number is conserved. These numbers are collectively known as lepton family numbers ...
The tau (τ), also called the tau lepton, tau particle or tauon, is an elementary particle similar to the electron, with negative electric charge and a spin of 1 / 2 .Like the electron, the muon, and the three neutrinos, the tau is a lepton, and like all elementary particles with half-integer spin, the tau has a corresponding antiparticle of opposite charge but equal mass and spin.
This quantum number is the charge of a global/gauge U(1) symmetry in some Grand Unified Theory models, called U(1) B−L.Unlike baryon number alone or lepton number alone, this hypothetical symmetry would not be broken by chiral anomalies or gravitational anomalies, as long as this symmetry is global, which is why this symmetry is often invoked.
In physics, the C parity or charge parity is a multiplicative quantum number of some particles that describes their behavior under the symmetry operation of charge conjugation. Charge conjugation changes the sign of all quantum charges (that is, additive quantum numbers ), including the electrical charge , baryon number and lepton number , and ...
Three antiquarks of different anticolors, giving an antibaryon with baryon number −1. The baryon number was defined long before the quark model was established, so rather than changing the definitions, particle physicists simply gave quarks one third the baryon number. Nowadays it might be more accurate to speak of the conservation of quark ...