When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Principal component analysis - Wikipedia

    en.wikipedia.org/wiki/Principal_component_analysis

    Principal component analysis (PCA) is a linear dimensionality reduction technique with applications in exploratory data analysis, visualization and data preprocessing.. The data is linearly transformed onto a new coordinate system such that the directions (principal components) capturing the largest variation in the data can be easily identified.

  3. L1-norm principal component analysis - Wikipedia

    en.wikipedia.org/wiki/L1-norm_principal...

    L1-norm principal component analysis (L1-PCA) is a general method for multivariate data analysis. [1] L1-PCA is often preferred over standard L2-norm principal component analysis (PCA) when the analyzed data may contain outliers (faulty values or corruptions), as it is believed to be robust .

  4. Post-anesthesia care unit - Wikipedia

    en.wikipedia.org/wiki/Post-anesthesia_care_unit

    The initial handoff, or otherwise referred as handover, is an interdisciplinary transfer of essential and critical patient information from one healthcare provider to another. Variations do exist depending on certain hospitals, medical facilities, and patient presentations. [ 4 ]

  5. Health care analytics - Wikipedia

    en.wikipedia.org/wiki/Health_care_analytics

    Health care analytics is the health care analysis activities that can be undertaken as a result of data collected from four areas within healthcare: (1) claims and cost data, (2) pharmaceutical and research and development (R&D) data, (3) clinical data (such as collected from electronic medical records (EHRs)), and (4) patient behaviors and preferences data (e.g. patient satisfaction or retail ...

  6. Healthcare engineering - Wikipedia

    en.wikipedia.org/wiki/Healthcare_engineering

    Healthcare engineering is expected to play a role of growing importance as healthcare continues to be one of the world's largest and fastest-growing industries [2] [3] where engineering is a major factor of advancement through creating, developing, and implementing cutting-edge devices, systems, and procedures attributed to breakthroughs in ...

  7. Robust principal component analysis - Wikipedia

    en.wikipedia.org/wiki/Robust_principal_component...

    The 2014 guaranteed algorithm for the robust PCA problem (with the input matrix being = +) is an alternating minimization type algorithm. [12] The computational complexity is (⁡) where the input is the superposition of a low-rank (of rank ) and a sparse matrix of dimension and is the desired accuracy of the recovered solution, i.e., ‖ ^ ‖ where is the true low-rank component and ^ is the ...

  8. Kernel principal component analysis - Wikipedia

    en.wikipedia.org/wiki/Kernel_principal_component...

    Output after kernel PCA, with a Gaussian kernel. Note in particular that the first principal component is enough to distinguish the three different groups, which is impossible using only linear PCA, because linear PCA operates only in the given (in this case two-dimensional) space, in which these concentric point clouds are not linearly separable.

  9. ANOVA–simultaneous component analysis - Wikipedia

    en.wikipedia.org/wiki/ANOVA–simultaneous...

    Simultaneous component analysis is mathematically identical to PCA, but is semantically different in that it models different objects or subjects at the same time. The standard notation for a SCA – and PCA – model is: = ′ + where X is the data, T are the component scores and P are the component loadings.