When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Quaternion - Wikipedia

    en.wikipedia.org/wiki/Quaternion

    Quaternions are also used in one of the proofs of Lagrange's four-square theorem in number theory, which states that every nonnegative integer is the sum of four integer squares. As well as being an elegant theorem in its own right, Lagrange's four square theorem has useful applications in areas of mathematics outside number theory, such as ...

  3. Quaternions and spatial rotation - Wikipedia

    en.wikipedia.org/wiki/Quaternions_and_spatial...

    3D visualization of a sphere and a rotation about an Euler axis (^) by an angle of In 3-dimensional space, according to Euler's rotation theorem, any rotation or sequence of rotations of a rigid body or coordinate system about a fixed point is equivalent to a single rotation by a given angle about a fixed axis (called the Euler axis) that runs through the fixed point. [6]

  4. History of quaternions - Wikipedia

    en.wikipedia.org/wiki/History_of_quaternions

    Quaternions continued to be a well-studied mathematical structure in the twentieth century, as the third term in the Cayley–Dickson construction of hypercomplex number systems over the reals, followed by the octonions, the sedenions, the trigintaduonions; they are also a useful tool in number theory, particularly in the study of the ...

  5. Quaternionic analysis - Wikipedia

    en.wikipedia.org/wiki/Quaternionic_analysis

    In mathematics, quaternionic analysis is the study of functions with quaternions as the domain and/or range. Such functions can be called functions of a quaternion variable just as functions of a real variable or a complex variable are called.

  6. Quaternion group - Wikipedia

    en.wikipedia.org/wiki/Quaternion_group

    It can also be realized as the subgroup of unit quaternions generated by [10] = / and =. The generalized quaternion groups have the property that every abelian subgroup is cyclic. [ 11 ] It can be shown that a finite p -group with this property (every abelian subgroup is cyclic) is either cyclic or a generalized quaternion group as defined ...

  7. Hypercomplex number - Wikipedia

    en.wikipedia.org/wiki/Hypercomplex_number

    In the nineteenth century, number systems called quaternions, tessarines, coquaternions, biquaternions, and octonions became established concepts in mathematical literature, added to the real and complex numbers. The concept of a hypercomplex number covered them all, and called for a discipline to explain and classify them.

  8. Classical Hamiltonian quaternions - Wikipedia

    en.wikipedia.org/wiki/Classical_Hamiltonian...

    This article describes Hamilton's original treatment of quaternions, using his notation and terms. Hamilton's treatment is more geometric than the modern approach, which emphasizes quaternions' algebraic properties. Mathematically, quaternions discussed differ from the modern definition only by the terminology which is used.

  9. Hyperbolic quaternion - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_quaternion

    The hyperbolic quaternions form a nonassociative ring; the failure of associativity in this algebra curtails the facility of this algebra in transformation theory. . Nevertheless, this algebra put a focus on analytical kinematics by suggesting a mathematical model: When one selects a unit vector r in the hyperbolic quaternions, th