Search results
Results From The WOW.Com Content Network
In physics, the Schrödinger picture or Schrödinger representation is a formulation of quantum mechanics in which the state vectors evolve in time, but the operators (observables and others) are mostly constant with respect to time (an exception is the Hamiltonian which may change if the potential changes).
In physics, the Heisenberg picture or Heisenberg representation [1] is a formulation (largely due to Werner Heisenberg in 1925) of quantum mechanics in which observables incorporate a dependency on time, but the states are time-independent. It stands in contrast to the Schrödinger picture in which observables are constant and the states evolve ...
All three of these choices are valid; the first gives the Schrödinger picture, the second the Heisenberg picture, and the third the interaction picture. The Schrödinger picture is useful when dealing with a time-independent Hamiltonian H , that is, ∂ t H = 0 {\displaystyle \partial _{t}H=0} .
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
The Heisenberg picture is the closest to classical Hamiltonian mechanics (for example, the commutators appearing in the above equations directly translate into the classical Poisson brackets); but this is already rather "high-browed", and the Schrödinger picture is considered easiest to visualize and understand by most people, to judge from ...
Any possible choice of parts will yield a valid interaction picture; but in order for the interaction picture to be useful in simplifying the analysis of a problem, the parts will typically be chosen so that H 0,S is well understood and exactly solvable, while H 1,S contains some harder-to-analyze perturbation to this system.
The Schrödinger functional is, in its most basic form, the time translation generator of state wavefunctionals. In layman's terms, it defines how a system of quantum particles evolves through time and what the subsequent systems look like.
While in principle this approach to solving quantum dynamics is equivalent to the Schrödinger picture or Heisenberg picture, it allows more easily for the inclusion of incoherent processes, which represent environmental interactions. The density operator has the property that it can represent a classical mixture of quantum states, and is thus ...