When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. State-transition matrix - Wikipedia

    en.wikipedia.org/wiki/State-transition_matrix

    The state-transition matrix is used to find the solution to a general state-space representation of a linear system in the following form ˙ = () + (), =, where () are the states of the system, () is the input signal, () and () are matrix functions, and is the initial condition at .

  3. State-space representation - Wikipedia

    en.wikipedia.org/wiki/State-space_representation

    The state space or phase space is the geometric space in which the axes are the state variables. The system state can be represented as a vector, the state vector. If the dynamical system is linear, time-invariant, and finite-dimensional, then the differential and algebraic equations may be written in matrix form.

  4. State-transition table - Wikipedia

    en.wikipedia.org/wiki/State-transition_table

    In the state-transition table, all possible inputs to the finite-state machine are enumerated across the columns of the table, while all possible states are enumerated across the rows. If the machine is in the state S 1 (the first row) and receives an input of 1 (second column), the machine will stay in the state S 1.

  5. Kripke structure (model checking) - Wikipedia

    en.wikipedia.org/wiki/Kripke_structure_(model...

    A Kripke structure is a variation of the transition system, originally proposed by Saul Kripke, [1] used in model checking [2] to represent the behavior of a system. It consists of a graph whose nodes represent the reachable states of the system and whose edges represent state transitions, together with a labelling function which maps each node ...

  6. State observer - Wikipedia

    en.wikipedia.org/wiki/State_observer

    In control theory, a state observer, state estimator, or Luenberger observer is a system that provides an estimate of the internal state of a given real system, from measurements of the input and output of the real system. It is typically computer-implemented, and provides the basis of many practical applications.

  7. Controllability Gramian - Wikipedia

    en.wikipedia.org/wiki/Controllability_Gramian

    In control theory, we may need to find out whether or not a system such as ˙ = + () = + is controllable, where , , and are, respectively, , , and matrices for a system with inputs, state variables and outputs.

  8. State-transition equation - Wikipedia

    en.wikipedia.org/wiki/State-Transition_Equation

    The state-transition equation is defined as the solution of the linear homogeneous state equation. The linear time-invariant state equation given by = + + (), with state vector x, control vector u, vector w of additive disturbances, and fixed matrices A, B, E can be solved by using either the classical method of solving linear differential equations or the Laplace transform method.

  9. Observability Gramian - Wikipedia

    en.wikipedia.org/wiki/Observability_Gramian

    Linear Time Invariant (LTI) Systems are those systems in which the parameters , , and are invariant with respect to time. One can determine if the LTI system is or is not observable simply by looking at the pair ( A , C ) {\displaystyle ({\boldsymbol {A}},{\boldsymbol {C}})} .