Search results
Results From The WOW.Com Content Network
In general, the same inversion transforms the given line L and given circle C into two new circles, c 1 and c 2. Thus, the problem becomes that of finding a solution line tangent to the two inverted circles, which was solved above. There are four such lines, and re-inversion transforms them into the four solution circles of the Apollonius problem.
There are four such solution lines, which may be constructed from the external and internal homothetic centers of the two circles. Re-inversion in P and undoing the resizing transforms such a solution line into the desired solution circle of the original Apollonius problem. All eight general solutions can be obtained by shrinking and swelling ...
However, some problems have distinct optimal solutions; for example, the problem of finding a feasible solution to a system of linear inequalities is a linear programming problem in which the objective function is the zero function (i.e., the constant function taking the value zero everywhere).
Watt's curve, which arose in the context of early work on the steam engine, is a sextic in two variables.. One method of solving the cubic equation involves transforming variables to obtain a sextic equation having terms only of degrees 6, 3, and 0, which can be solved as a quadratic equation in the cube of the variable.
Conversely, every line is the set of all solutions of a linear equation. The phrase "linear equation" takes its origin in this correspondence between lines and equations: a linear equation in two variables is an equation whose solutions form a line. If b ≠ 0, the line is the graph of the function of x that
Homogeneity of degree 1 / operation of scalar multiplication () = () Thus, a linear map is said to be operation preserving . In other words, it does not matter whether the linear map is applied before (the right hand sides of the above examples) or after (the left hand sides of the examples) the operations of addition and scalar multiplication.
NP-complete special cases include the edge dominating set problem, i.e., the dominating set problem in line graphs. NP-complete variants include the connected dominating set problem and the maximum leaf spanning tree problem. [3]: ND2 Feedback vertex set [2] [3]: GT7 Feedback arc set [2] [3]: GT8 Graph coloring [2] [3]: GT4
Lagrange and other interpolation at equally spaced points, as in the example above, yield a polynomial oscillating above and below the true function. This behaviour tends to grow with the number of points, leading to a divergence known as Runge's phenomenon; the problem may be eliminated by choosing interpolation points at Chebyshev nodes. [5]