Search results
Results From The WOW.Com Content Network
The transition zone between these near and far field regions, extending over the distance from one to two wavelengths from the antenna, [citation needed] is the intermediate region in which both near-field and far-field effects are important. In this region, near-field behavior dies out and ceases to be important, leaving far-field effects as ...
The far-field pattern of an antenna may be determined experimentally at an antenna range, or alternatively, the near-field pattern may be found using a near-field scanner, and the radiation pattern deduced from it by computation. [1] The far-field radiation pattern can also be calculated from the antenna shape by computer programs such as NEC.
The first technique developed was the far-field range, where the antenna under test (AUT) is placed in the far-field of a range antenna. Due to the size required to create a far-field range for large antennas, near-field techniques were developed, which allow the measurement of the field on a distance close to the antenna (typically 3 to 10 ...
The Fresnel number establishes a coarse criterion to define the near and far field approximations. Essentially, if Fresnel number is small – less than roughly 1 – the beam is said to be in the far field. If Fresnel number is larger than 1, the beam is said to be near field. However this criterion does not depend on any actual measurement of ...
In contrast the diffraction pattern in the far field region is given by the Fraunhofer diffraction equation. The near field can be specified by the Fresnel number, F, of the optical arrangement. When the diffracted wave is considered to be in the Fraunhofer field. However, the validity of the Fresnel diffraction integral is deduced by the ...
A changing electromagnetic field which is physically close to currents and charges (see near and far field for a definition of "close") will have a dipole characteristic that is dominated by either a changing electric dipole, or a changing magnetic dipole. This type of dipole field near sources is called an electromagnetic near-field.
In 2021 the FCC granted a license to an over-the-air (OTA) wireless charging system that combines near-field and far-field methods by using a frequency of about 900 MHz. Due to the radiated power of about 1 W this system is intended for small IoT devices as various sensors, trackers, detectors and monitors. [127]
The near-fields produced by this method are known as Dickson near-fields; the near-field of order 9 given above is a Dickson near-field. Hans Zassenhaus proved that all but 7 finite near-fields are either fields or Dickson near-fields.