When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Gaussian integral - Wikipedia

    en.wikipedia.org/wiki/Gaussian_integral

    A different technique, which goes back to Laplace (1812), [3] is the following. Let = =. Since the limits on s as y → ±∞ depend on the sign of x, it simplifies the calculation to use the fact that e −x 2 is an even function, and, therefore, the integral over all real numbers is just twice the integral from zero to infinity.

  3. Gauss's law - Wikipedia

    en.wikipedia.org/wiki/Gauss's_law

    Since the flux is defined as an integral of the electric field, this expression of Gauss's law is called the integral form. A tiny Gauss's box whose sides are perpendicular to a conductor's surface is used to find the local surface charge once the electric potential and the electric field are calculated by solving Laplace's equation.

  4. Mathematical descriptions of the electromagnetic field

    en.wikipedia.org/wiki/Mathematical_descriptions...

    The source free equations can be written by the action of the exterior derivative on this 2-form. But for the equations with source terms (Gauss's law and the Ampère-Maxwell equation), the Hodge dual of this 2-form is needed. The Hodge star operator takes a p-form to a (n − p)-form, where n is the number of dimensions.

  5. Divergence theorem - Wikipedia

    en.wikipedia.org/wiki/Divergence_theorem

    Generically, these equations state that the divergence of the flow of the conserved quantity is equal to the distribution of sources or sinks of that quantity. The divergence theorem states that any such continuity equation can be written in a differential form (in terms of a divergence) and an integral form (in terms of a flux). [12]

  6. Lists of integrals - Wikipedia

    en.wikipedia.org/wiki/Lists_of_integrals

    This can be proved by computing the derivative of the right-hand side of the formula, taking into account that the condition on g is here for insuring the continuity of the integral. This gives the following formulas (where a ≠ 0), which are valid over any interval where f is continuous (over larger intervals, the constant C must be replaced ...

  7. Common integrals in quantum field theory - Wikipedia

    en.wikipedia.org/wiki/Common_integrals_in...

    A common integral is a path integral of the form ⁡ ((, ˙)) where (, ˙) is the classical action and the integral is over all possible paths that a particle may take. In the limit of small ℏ {\displaystyle \hbar } the integral can be evaluated in the stationary phase approximation .

  8. Gaussian surface - Wikipedia

    en.wikipedia.org/wiki/Gaussian_surface

    It is an arbitrary closed surface S = ∂V (the boundary of a 3-dimensional region V) used in conjunction with Gauss's law for the corresponding field (Gauss's law, Gauss's law for magnetism, or Gauss's law for gravity) by performing a surface integral, in order to calculate the total amount of the source quantity enclosed; e.g., amount of ...

  9. Electric flux - Wikipedia

    en.wikipedia.org/wiki/Electric_flux

    This relation is known as Gauss's law for electric fields in its integral form and it is one of Maxwell's equations. While the electric flux is not affected by charges that are not within the closed surface, the net electric field, E can be affected by charges that lie outside the closed surface. While Gauss's law holds for all situations, it ...