Search results
Results From The WOW.Com Content Network
Ficus plant grown under a white LED grow light. A grow light is an electric light that can help plants grow. Grow lights either attempt to provide a light spectrum similar to that of the sun, or to provide a spectrum that is more tailored to the needs of the plants being cultivated (typically a varying combination of red and blue light, which generally appears pink to purple to the human eye).
When Emerson exposed green plants to differing wavelengths of light, he noticed that at wavelengths of greater than 680 nm the efficiency of photosynthesis decreased abruptly despite the fact that this is a region of the spectrum where chlorophyll still absorbs light (chlorophyll is the green pigment in plants - it absorbs mainly the red and blue wavelengths from light).
Robert Emerson discovered two light reactions by testing plant productivity using different wavelengths of light. With the red alone, the light reactions were suppressed. When blue and red were combined, the output was much more substantial. Thus, there were two photosystems, one absorbing up to 600 nm wavelengths, the other up to 700 nm.
In the early 1990s the average use of power in the countryside amounted to the equivalent of a 60W light bulb switched on for less than 30 minutes a day. [ 33 ] China launched the China Township Electrification Program in 2001 to provide renewable electricity to 1,000 townships, one of the largest of such programs in the world.
Their first power plants consisted of alternation of crops and solar panels. The new power plants are greenhouses. [citation needed] In 2017 the Tenergie company began the deployment of photovoltaic greenhouses with an architecture that diffuses light in order to reduce the contrasts between light bands and shade bands created by solar panels. [85]
However, absorption of light of the right photon energy can lift them to a higher energy level. Any light that has too little or too much energy cannot be absorbed and is reflected. The electron in the higher energy level is unstable and will quickly return to its normal lower energy level. To do this, it must release the absorbed energy.
Many plants lose much of the remaining energy on growing roots. Most crop plants store ~0.25% to 0.5% of the sunlight in the product (corn kernels, potato starch, etc.). Photosynthesis increases linearly with light intensity at low intensity, but at higher intensity this is no longer the case (see Photosynthesis-irradiance curve). Above about ...
Plants adapted to shade have the ability to use far-red light (about 730 nm) more effectively than plants adapted to full sunlight. Most red light gets absorbed by the shade-intolerant canopy plants, but more of the far-red light penetrates the canopy, reaching the understorey. The shade-tolerant plants found here are capable of photosynthesis ...