Search results
Results From The WOW.Com Content Network
The tree-in-bud sign is a nonspecific imaging finding that implies impaction within bronchioles, the smallest airway passages in the lung. The differential for this finding includes malignant and inflammatory etiologies, either infectious or sterile.
The version given here is that proven by Nash-Williams; Kruskal's formulation is somewhat stronger. All trees we consider are finite. Given a tree T with a root, and given vertices v, w, call w a successor of v if the unique path from the root to w contains v, and call w an immediate successor of v if additionally the path from v to w contains no other vertex.
Consider a linear non-homogeneous ordinary differential equation of the form = + (+) = where () denotes the i-th derivative of , and denotes a function of .. The method of undetermined coefficients provides a straightforward method of obtaining the solution to this ODE when two criteria are met: [2]
Binomial differential equation (′) = (,) Class of differential equation which may sometimes be solved exactly [3] Briot-Bouquet Equation: 1 ′ = (,) Class of differential equation which may sometimes be solved exactly [4]
For example, consider the ordinary differential equation ′ = + The Euler method for solving this equation uses the finite difference quotient (+) ′ to approximate the differential equation by first substituting it for u'(x) then applying a little algebra (multiplying both sides by h, and then adding u(x) to both sides) to get (+) + (() +).
In mathematics, the Runge–Kutta–Fehlberg method (or Fehlberg method) is an algorithm in numerical analysis for the numerical solution of ordinary differential equations. It was developed by the German mathematician Erwin Fehlberg and is based on the large class of Runge–Kutta methods .
In mathematics, the characteristic equation (or auxiliary equation [1]) is an algebraic equation of degree n upon which depends the solution of a given n th-order differential equation [2] or difference equation. [3] [4] The characteristic equation can only be formed when the differential equation is linear and homogeneous, and has constant ...
Thus, one of the two sets of boundary functions {f 1, f 2} or {g 1, g 2} is redundant, and this implies that a partial differential equation with boundary conditions on a rectangle cannot have arbitrary boundary conditions on the borders, since the conditions at x = x 1, x = x 2 must be consistent with those imposed at y = y 1 and y = y 2.