Ads
related to: rc circuit all about circuits
Search results
Results From The WOW.Com Content Network
A resistor–capacitor circuit (RC circuit), or RC filter or RC network, is an electric circuit composed of resistors and capacitors. It may be driven by a voltage or current source and these will produce different responses. A first order RC circuit is composed of one resistor and one capacitor and is the simplest type of RC circuit.
Another common design is the "Twin-T" oscillator as it uses two "T" RC circuits operated in parallel. One circuit is an R-C-R "T" which acts as a low-pass filter. The second circuit is a C-R-C "T" which operates as a high-pass filter. Together, these circuits form a bridge which is tuned at the desired frequency of oscillation.
The RC time constant, denoted τ (lowercase tau), the time constant (in seconds) of a resistor–capacitor circuit (RC circuit), is equal to the product of the circuit resistance (in ohms) and the circuit capacitance (in farads):
Figure 1: Simple RC circuit and auxiliary circuits to find time constants. Figure 1 shows a simple RC low-pass filter. Its transfer function is found using Kirchhoff's current law as follows. At the output, = , where V 1 is the voltage at the top of capacitor C 1. At the center node:
Similarly, in an RC circuit composed of a single resistor and capacitor, the time constant (in seconds) is: = where R is the resistance (in ohms ) and C is the capacitance (in farads ). Electrical circuits are often more complex than these examples, and may exhibit multiple time constants (See Step response and Pole splitting for some examples.)
First-order RC filter low-pass filter circuit. Roll-off of a first-order low-pass filter is 20 dB/decade (≈6 dB/octave) A simple first-order network such as a RC circuit will have a roll-off of 20 dB/decade. This is a little over 6 dB/octave and is the more usual description given for this roll-off.