Search results
Results From The WOW.Com Content Network
Solid carbon dioxide sublimes rapidly along the solid-gas boundary (sublimation point) below the triple point (e.g., at the temperature of −78.5 °C, at atmospheric pressure), whereas its melting into liquid CO 2 can occur along the solid-liquid boundary (melting point) at pressures and temperatures above the triple point (i.e., 5.1 atm, − ...
The red line on the chart to the right is the maximum concentration of water vapor expected for a given temperature. The water vapor concentration increases significantly as the temperature rises, approaching 100% (steam, pure water vapor) at 100 °C. However the difference in densities between air and water vapor would still exist (0.598 vs. 1 ...
The increase of both ocean surface temperature and deeper ocean temperature is an important effect of climate change on oceans. [11] Deep ocean water is the name for cold, salty water found deep below the surface of Earth's oceans. Deep ocean water makes up about 90% of the volume of the oceans. Deep ocean water has a very uniform temperature ...
It exchanges heat, water and carbon with the atmosphere, helping to control our weather in Europe and marine ecosystems. Climate change is causing the planet to warm.
A typical phase diagram.The solid green line applies to most substances; the dashed green line gives the anomalous behavior of water. In thermodynamics, the triple point of a substance is the temperature and pressure at which the three phases (gas, liquid, and solid) of that substance coexist in thermodynamic equilibrium. [1]
The ocean plays a key role in the water cycle as it is the source of 86% of global evaporation. [2] The water cycle involves the exchange of energy, which leads to temperature changes. When water evaporates, it takes up energy from its surroundings and cools the environment. When it condenses, it releases energy and warms the environment.
A thermocline (also known as the thermal layer or the metalimnion in lakes) is a distinct layer based on temperature within a large body of fluid (e.g. water, as in an ocean or lake; or air, e.g. an atmosphere) with a high gradient of distinct temperature differences associated with depth.
Ocean dynamics define and describe the flow of water within the oceans. Ocean temperature and motion fields can be separated into three distinct layers: mixed (surface) layer, upper ocean (above the thermocline), and deep ocean. Ocean dynamics has traditionally been investigated by sampling from instruments in situ. [1]