Search results
Results From The WOW.Com Content Network
Row 21. Values of the seven parameters for the fifth ΔG° form equation; temperature limit for the equation. Most computerized databases will create a table of thermodynamic values using the values from the datafile. For MgCl 2 (c,l,g) at 1 atm pressure: Thermodynamic properties table for MgCl 2 (c,l,g), from the FREED datafile. Some values ...
That value is also the standard formation energy (∆G f °) for an Fe 2+ ion, since e − and Fe(s) both have zero formation energy. Data from different sources may cause table inconsistencies.
Also agrees with Celsius values from Section 4: Properties of the Elements and Inorganic Compounds, Melting, Boiling, Triple, and Critical Point Temperatures of the Elements Estimated accuracy for T c and P c is indicated by the number of digits.
Single ion hydration entropy can be derived. Values are shown in the following table. The more negative the value, the more there is ordering in forming the aqua ion. It is notable that the heavy alkali metals have rather small entropy values which suggests that both the first and second solvation shells are somewhat indistinct.
The standard Gibbs free energy of formation (G f °) of a compound is the change of Gibbs free energy that accompanies the formation of 1 mole of a substance in its standard state from its constituent elements in their standard states (the most stable form of the element at 1 bar of pressure and the specified temperature, usually 298.15 K or 25 °C).
The standard molar entropy at pressure = is usually given the symbol S°, and has units of joules per mole per kelvin (J⋅mol −1 ⋅K −1). Unlike standard enthalpies of formation, the value of S° is absolute. That is, an element in its standard state has a definite, nonzero value of S at room temperature.
The following list shows different orders of magnitude of entropy. Factor (J⋅K −1) Value Item 10 −24: 9.5699 × 10 −24 J⋅K −1: Entropy equivalent of one ...
J.A. Dean (ed.), Lange's Handbook of Chemistry (15th Edition), McGraw-Hill, 1999; Section 6, Thermodynamic Properties; Table 6.4, Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds