When.com Web Search

  1. Ads

    related to: probability problems and answers

Search results

  1. Results From The WOW.Com Content Network
  2. Boy or girl paradox - Wikipedia

    en.wikipedia.org/wiki/Boy_or_Girl_paradox

    The Boy or Girl paradox surrounds a set of questions in probability theory, which are also known as The Two Child Problem, [1] Mr. Smith's Children [2] and the Mrs. Smith Problem. The initial formulation of the question dates back to at least 1959, when Martin Gardner featured it in his October 1959 "Mathematical Games column" in Scientific ...

  3. Bertrand's box paradox - Wikipedia

    en.wikipedia.org/wiki/Bertrand's_box_paradox

    The probability of drawing another gold coin from the same box is 0 in (a), and 1 in (b) and (c). Thus, the overall probability of drawing a gold coin in the second draw is ⁠ 0 / 3 ⁠ + ⁠ 1 / 3 ⁠ + ⁠ 1 / 3 ⁠ = ⁠ 2 / 3 ⁠. The problem can be reframed by describing the boxes as each having one drawer on each of two sides. Each ...

  4. Monty Hall problem - Wikipedia

    en.wikipedia.org/wiki/Monty_Hall_problem

    The answer to the first question is ⁠ 2 / 3 ⁠, as is shown correctly by the "simple" solutions. But the answer to the second question is now different: the conditional probability the car is behind door 1 or door 2 given the host has opened door 3 (the door on the right) is ⁠ 1 / 2 ⁠.

  5. Birthday problem - Wikipedia

    en.wikipedia.org/wiki/Birthday_problem

    In probability theory, the birthday problem asks for the probability that, in a set of n randomly chosen people, at least two will share the same birthday. The birthday paradox is the counterintuitive fact that only 23 people are needed for that probability to exceed 50%.

  6. Bertrand paradox (probability) - Wikipedia

    en.wikipedia.org/wiki/Bertrand_paradox_(probability)

    The Bertrand paradox is a problem within the classical interpretation of probability theory. Joseph Bertrand introduced it in his work Calcul des probabilités (1889) [1] as an example to show that the principle of indifference may not produce definite, well-defined results for probabilities if it is applied uncritically when the domain of possibilities is infinite.

  7. 100 prisoners problem - Wikipedia

    en.wikipedia.org/wiki/100_prisoners_problem

    In the initial problem, the 100 prisoners are successful if the longest cycle of the permutation has a length of at most 50. Their survival probability is therefore equal to the probability that a random permutation of the numbers 1 to 100 contains no cycle of length greater than 50. This probability is determined in the following.