Search results
Results From The WOW.Com Content Network
In the physical sciences, the wavenumber (or wave number), also known as repetency, [1] is the spatial frequency of a wave. Ordinary wavenumber is defined as the number of wave cycles divided by length; it is a physical quantity with dimension of reciprocal length , expressed in SI units of cycles per metre or reciprocal metre (m -1 ).
m s −2 [L][T] −2: Spatial position Position of a point in space, not necessarily a point on the wave profile or any line of propagation d, r: m [L] Wave profile displacement Along propagation direction, distance travelled (path length) by one wave from the source point r 0 to any point in space d (for longitudinal or transverse waves) L, d, r
The wave vector and angular wave vector are related by a fixed constant of proportionality, 2 π radians per cycle. It is common in several fields of physics to refer to the angular wave vector simply as the wave vector, in contrast to, for example, crystallography. [1] [2] It is also common to use the symbol k for whichever is in use.
For an incident wave traveling from one medium (where the wave speed is c 1) to another medium (where the wave speed is c 2), one part of the wave will transmit into the second medium, while another part reflects back into the other direction and stays in the first medium. The amplitude of the transmitted wave and the reflected wave can be ...
In some systems, such as water waves or optics, wave-like states can extend over one or two dimensions. Spatial coherence describes the ability for two spatial points x 1 and x 2 in the extent of a wave to interfere when averaged over time. More precisely, the spatial coherence is the cross-correlation between two points in a wave for all times.
This linear growth is a reflection of the (time-invariant) momentum uncertainty: the wave packet is confined to a narrow Δx = √ a/2, and so has a momentum which is uncertain (according to the uncertainty principle) by the amount ħ/ √ 2a, a spread in velocity of ħ/m √ 2a, and thus in the future position by ħt /m √ 2a. The uncertainty ...
The concept that matter behaves like a wave was proposed by French physicist Louis de Broglie (/ d ə ˈ b r ɔɪ /) in 1924, and so matter waves are also known as de Broglie waves. The de Broglie wavelength is the wavelength , λ , associated with a particle with momentum p through the Planck constant , h : λ = h p . {\displaystyle \lambda ...
A modulated wave resulting from adding two sine waves of identical amplitude and nearly identical wavelength and frequency. A common situation resulting in an envelope function in both space x and time t is the superposition of two waves of almost the same wavelength and frequency: [2]