Search results
Results From The WOW.Com Content Network
Some chloroplast genomes have since lost [81] [82] or flipped the inverted repeats (making them direct repeats). [73] It is possible that the inverted repeats help stabilize the rest of the chloroplast genome, as chloroplast genomes which have lost some of the inverted repeat segments tend to get rearranged more. [82]
This creates a H + gradient, making H + ions flow back into the stroma of the chloroplast, providing the energy for the (re)generation of ATP. [citation needed] The photosystem II complex replaced its lost electrons from H 2 O, so electrons are not returned to photosystem II as they would in the analogous cyclic pathway. Instead, they are ...
By replenishing lost electrons with electrons from the splitting of water, photosystem II provides the electrons for all of photosynthesis to occur. The hydrogen ions (protons) generated by the oxidation of water help to create a proton gradient that is used by ATP synthase to generate ATP .
Many genes in the genomes of mitochondria and chloroplasts have been lost or transferred to the nucleus of the host cell. Consequently, the chromosomes of many eukaryotes contain genes that originated from the genomes of mitochondria and plastids. [71]
Chloroplast DNA (cpDNA), also known as plastid DNA (ptDNA) is the DNA located in chloroplasts, which are photosynthetic organelles located within the cells of some eukaryotic organisms. Chloroplasts, like other types of plastid, contain a genome separate from that in the cell nucleus.
For example, chloroplasts in plants and green algae have lost all phycobilisomes, the light harvesting complexes found in cyanobacteria, red algae and glaucophytes, but instead contain stroma and grana thylakoids. The glaucocystophycean plastid—in contrast to chloroplasts and rhodoplasts—is still surrounded by the remains of the ...
Chloroplasts and mitochondria also replicate semi-autonomously outside of the cell cycle replication system via binary fission. [12] Consistent with the theory, decreased genome size within the organelle and gene integration into the nucleus occurred. Chloroplasts genomes encode 50-200 proteins, compared to the thousands in cyanobacterium. [13]
As in cyanobacteria and chloroplasts, this is a solid-state process that depends on the precise orientation of various functional groups within a complex transmembrane macromolecular structure. To make NADPH, purple bacteria use an external electron donor (hydrogen, hydrogen sulfide , sulfur, sulfite, or organic molecules such as succinate and ...