Ad
related to: atomic mass of oxygen in grams and pounds of water in order to produce
Search results
Results From The WOW.Com Content Network
For example, 50 g of zinc will react with oxygen to produce 62.24 g of zinc oxide, implying that the zinc has reacted with 12.24 g of oxygen (from the Law of conservation of mass): the equivalent weight of zinc is the mass which will react with eight grams of oxygen, hence 50 g × 8 g/12.24 g = 32.7 g.
The chemists used an "atomic mass unit" (amu) scale such that the natural mixture of oxygen isotopes had an atomic mass 16, while the physicists assigned the same number 16 to only the atomic mass of the most common oxygen isotope (16 O, containing eight protons and eight neutrons).
Oxygen constitutes 49.2% of the Earth's crust by mass [69] as part of oxide compounds such as silicon dioxide and is the most abundant element by mass in the Earth's crust. It is also the major component of the world's oceans (88.8% by mass). [ 19 ]
Water is ~11% hydrogen by mass but ~67% hydrogen by atomic percent, and these numbers along with the complementary % numbers for oxygen in water, are the largest contributors to overall mass and atomic composition figures. Because of water content, the human body contains more oxygen by mass than any other element, but more hydrogen by atom ...
Each element has an atomic mass, and considering molecules as collections of atoms, compounds have a definite molecular mass, which when expressed in daltons is numerically equal to the molar mass in g/mol. By definition, the atomic mass of carbon-12 is 12 Da, giving a molar mass of 12 g/mol.
For example, if one tried to demonstrate it using the hydrocarbons decane (C 10 H 22) and undecane (C 11 H 24), one would find that 100 grams of carbon could react with 18.46 grams of hydrogen to produce decane or with 18.31 grams of hydrogen to produce undecane, for a ratio of hydrogen masses of 121:120, which is hardly a ratio of "small ...
The molar mass of atoms of an element is given by the relative atomic mass of the element multiplied by the molar mass constant, M u ≈ 1.000 000 × 10 −3 kg/mol ≈ 1 g/mol. For normal samples from Earth with typical isotope composition, the atomic weight can be approximated by the standard atomic weight [ 2 ] or the conventional atomic weight.
Oxygen-15 is a radioisotope, often used in positron emission tomography (PET). It can be used in, among other things, water for PET myocardial perfusion imaging and for brain imaging. [20] [21] It has an atomic mass of 15.003 0656 (5), and a half-life of 122.266(43) s. It is produced through deuteron bombardment of nitrogen-14 using a cyclotron ...