When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Factorization of polynomials over finite fields - Wikipedia

    en.wikipedia.org/wiki/Factorization_of...

    Polynomial factoring algorithms use basic polynomial operations such as products, divisions, gcd, powers of one polynomial modulo another, etc. A multiplication of two polynomials of degree at most n can be done in O(n 2) operations in F q using "classical" arithmetic, or in O(nlog(n) log(log(n)) ) operations in F q using "fast" arithmetic.

  3. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    The polynomial x 2 + cx + d, where a + b = c and ab = d, can be factorized into (x + a)(x + b).. In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind.

  4. Factorization of polynomials - Wikipedia

    en.wikipedia.org/wiki/Factorization_of_polynomials

    If the original polynomial is the product of factors at least two of which are of degree 2 or higher, this technique only provides a partial factorization; otherwise the factorization is complete. In particular, if there is exactly one non-linear factor, it will be the polynomial left after all linear factors have been factorized out.

  5. Rational root theorem - Wikipedia

    en.wikipedia.org/wiki/Rational_root_theorem

    That lemma says that if the polynomial factors in Q[X], then it also factors in Z[X] as a product of primitive polynomials. Now any rational root p/q corresponds to a factor of degree 1 in Q[X] of the polynomial, and its primitive representative is then qx − p, assuming that p and q are coprime.

  6. Matrix factorization of a polynomial - Wikipedia

    en.wikipedia.org/wiki/Matrix_factorization_of_a...

    In mathematics, a matrix factorization of a polynomial is a technique for factoring irreducible polynomials with matrices. David Eisenbud proved that every multivariate real-valued polynomial p without linear terms can be written as AB = pI , where A and B are square matrices and I is the identity matrix . [ 1 ]

  7. Monic polynomial - Wikipedia

    en.wikipedia.org/wiki/Monic_polynomial

    This implies that, the monic polynomials in a univariate polynomial ring over a commutative ring form a monoid under polynomial multiplication. Two monic polynomials are associated if and only if they are equal, since the multiplication of a polynomial by a nonzero constant produces a polynomial with this constant as its leading coefficient.

  8. Polynomial long division - Wikipedia

    en.wikipedia.org/wiki/Polynomial_long_division

    The result R = 0 occurs if and only if the polynomial A has B as a factor. Thus long division is a means for testing whether one polynomial has another as a factor, and, if it does, for factoring it out. For example, if a root r of A is known, it can be factored out by dividing A by (x – r).

  9. System of polynomial equations - Wikipedia

    en.wikipedia.org/wiki/System_of_polynomial_equations

    Moreover, the univariate polynomial h(x 0) of the RUR may be factorized, and this gives a RUR for every irreducible factor. This provides the prime decomposition of the given ideal (that is the primary decomposition of the radical of the ideal). In practice, this provides an output with much smaller coefficients, especially in the case of ...