When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Uniform continuity - Wikipedia

    en.wikipedia.org/wiki/Uniform_continuity

    Linear functions + are the simplest examples of uniformly continuous functions. Any continuous function on the interval [ 0 , 1 ] {\displaystyle [0,1]} is also uniformly continuous, since [ 0 , 1 ] {\displaystyle [0,1]} is a compact set.

  3. Continuous function - Wikipedia

    en.wikipedia.org/wiki/Continuous_function

    However, f is continuous if all functions are continuous and the sequence converges uniformly, by the uniform convergence theorem. This theorem can be used to show that the exponential functions , logarithms , square root function, and trigonometric functions are continuous.

  4. Cantor function - Wikipedia

    en.wikipedia.org/wiki/Cantor_function

    The Cantor function is the most frequently cited example of a real function that is uniformly continuous (precisely, it is Hölder continuous of exponent α = log 2/log 3) but not absolutely continuous.

  5. Hölder condition - Wikipedia

    en.wikipedia.org/wiki/Hölder_condition

    There are examples of uniformly continuous functions that are not α –Hölder continuous for any α. For instance, the function defined on [0, 1/2] by f(0) = 0 and by f(x) = 1/log(x) otherwise is continuous, and therefore uniformly continuous by the Heine-Cantor theorem. It does not satisfy a Hölder condition of any order, however.

  6. Lipschitz continuity - Wikipedia

    en.wikipedia.org/wiki/Lipschitz_continuity

    The function f(x) = √ x defined on [0, 1] is not Lipschitz continuous. This function becomes infinitely steep as x approaches 0 since its derivative becomes infinite. However, it is uniformly continuous, [8] and both Hölder continuous of class C 0, α for α ≤ 1/2 and also absolutely continuous on [0, 1] (both of which imply the former).

  7. Uniform convergence - Wikipedia

    en.wikipedia.org/wiki/Uniform_convergence

    A sequence of functions () converges uniformly to when for arbitrary small there is an index such that the graph of is in the -tube around f whenever . The limit of a sequence of continuous functions does not have to be continuous: the sequence of functions () = ⁡ (marked in green and blue) converges pointwise over the entire domain, but the limit function is discontinuous (marked in red).

  8. Modulus of continuity - Wikipedia

    en.wikipedia.org/wiki/Modulus_of_continuity

    A sublinear modulus of continuity can easily be found for any uniformly continuous function which is a bounded perturbation of a Lipschitz function: if f is a uniformly continuous function with modulus of continuity ω, and g is a k Lipschitz function with uniform distance r from f, then f admits the sublinear module of continuity min{ω(t), 2r ...

  9. Continuous uniform distribution - Wikipedia

    en.wikipedia.org/wiki/Continuous_uniform...

    Any probability density function integrates to , so the probability density function of the continuous uniform distribution is graphically portrayed as a rectangle where ⁠ ⁠ is the base length and ⁠ ⁠ is the height. As the base length increases, the height (the density at any particular value within the distribution boundaries) decreases.