Ads
related to: area of quadrilateral using coordinates worksheet 1
Search results
Results From The WOW.Com Content Network
In Euclidean geometry, Brahmagupta's formula, named after the 7th century Indian mathematician, is used to find the area of any convex cyclic quadrilateral (one that can be inscribed in a circle) given the lengths of the sides. Its generalized version, Bretschneider's formula, can be used with non-cyclic quadrilateral.
In Euclidean geometry, a cyclic quadrilateral or inscribed quadrilateral is a quadrilateral whose vertices all lie on a single circle. This circle is called the circumcircle or circumscribed circle , and the vertices are said to be concyclic .
Farey sunburst of order 6, with 1 interior (red) and 96 boundary (green) points giving an area of 1 + 96 / 2 − 1 = 48 [1]. In geometry, Pick's theorem provides a formula for the area of a simple polygon with integer vertex coordinates, in terms of the number of integer points within it and on its boundary.
The quadrilateral with given side lengths that has the maximum area is the cyclic quadrilateral. [43] Of all convex quadrilaterals with given diagonals, the orthodiagonal quadrilateral has the largest area. [38]: p.119 This is a direct consequence of the fact that the area of a convex quadrilateral satisfies
In geometry, Brahmagupta's theorem states that if a cyclic quadrilateral is orthodiagonal (that is, has perpendicular diagonals), then the perpendicular to a side from the point of intersection of the diagonals always bisects the opposite side. [1] It is named after the Indian mathematician Brahmagupta (598-668). [2]
Bretschneider's formula generalizes Brahmagupta's formula for the area of a cyclic quadrilateral, which in turn generalizes Heron's formula for the area of a triangle.. The trigonometric adjustment in Bretschneider's formula for non-cyclicality of the quadrilateral can be rewritten non-trigonometrically in terms of the sides and the diagonals e and f to give [2] [3]
Shoelace scheme for determining the area of a polygon with point coordinates (,),..., (,). The shoelace formula, also known as Gauss's area formula and the surveyor's formula, [1] is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian coordinates in the plane. [2]
If a bicentric quadrilateral has tangency chords k, l and diagonals p, q, then it has area [8]: p.129 = +. If k, l are the tangency chords and m, n are the bimedians of the quadrilateral, then the area can be calculated using the formula [9]