When.com Web Search

  1. Ads

    related to: area of quadrilateral using coordinates worksheet 1

Search results

  1. Results From The WOW.Com Content Network
  2. Brahmagupta's formula - Wikipedia

    en.wikipedia.org/wiki/Brahmagupta's_formula

    In Euclidean geometry, Brahmagupta's formula, named after the 7th century Indian mathematician, is used to find the area of any convex cyclic quadrilateral (one that can be inscribed in a circle) given the lengths of the sides. Its generalized version, Bretschneider's formula, can be used with non-cyclic quadrilateral.

  3. Cyclic quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Cyclic_quadrilateral

    In Euclidean geometry, a cyclic quadrilateral or inscribed quadrilateral is a quadrilateral whose vertices all lie on a single circle. This circle is called the circumcircle or circumscribed circle , and the vertices are said to be concyclic .

  4. Pick's theorem - Wikipedia

    en.wikipedia.org/wiki/Pick's_theorem

    Farey sunburst of order 6, with 1 interior (red) and 96 boundary (green) points giving an area of 1 + ⁠ 96 / 2 ⁠ − 1 = 48 [1]. In geometry, Pick's theorem provides a formula for the area of a simple polygon with integer vertex coordinates, in terms of the number of integer points within it and on its boundary.

  5. Quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Quadrilateral

    The quadrilateral with given side lengths that has the maximum area is the cyclic quadrilateral. [43] Of all convex quadrilaterals with given diagonals, the orthodiagonal quadrilateral has the largest area. [38]: p.119 This is a direct consequence of the fact that the area of a convex quadrilateral satisfies

  6. Brahmagupta theorem - Wikipedia

    en.wikipedia.org/wiki/Brahmagupta_theorem

    In geometry, Brahmagupta's theorem states that if a cyclic quadrilateral is orthodiagonal (that is, has perpendicular diagonals), then the perpendicular to a side from the point of intersection of the diagonals always bisects the opposite side. [1] It is named after the Indian mathematician Brahmagupta (598-668). [2]

  7. Bretschneider's formula - Wikipedia

    en.wikipedia.org/wiki/Bretschneider's_formula

    Bretschneider's formula generalizes Brahmagupta's formula for the area of a cyclic quadrilateral, which in turn generalizes Heron's formula for the area of a triangle.. The trigonometric adjustment in Bretschneider's formula for non-cyclicality of the quadrilateral can be rewritten non-trigonometrically in terms of the sides and the diagonals e and f to give [2] [3]

  8. Shoelace formula - Wikipedia

    en.wikipedia.org/wiki/Shoelace_formula

    Shoelace scheme for determining the area of a polygon with point coordinates (,),..., (,). The shoelace formula, also known as Gauss's area formula and the surveyor's formula, [1] is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian coordinates in the plane. [2]

  9. Bicentric quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Bicentric_quadrilateral

    If a bicentric quadrilateral has tangency chords k, l and diagonals p, q, then it has area [8]: p.129 = +. If k, l are the tangency chords and m, n are the bimedians of the quadrilateral, then the area can be calculated using the formula [9]