When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Euler's totient function - Wikipedia

    en.wikipedia.org/wiki/Euler's_totient_function

    Thus, it is often called Euler's phi function or simply the phi function. In 1879, J. J. Sylvester coined the term totient for this function, [14] [15] so it is also referred to as Euler's totient function, the Euler totient, or Euler's totient. [16] Jordan's totient is a generalization of Euler's. The cototient of n is defined as n − φ(n).

  3. Euler's theorem - Wikipedia

    en.wikipedia.org/wiki/Euler's_theorem

    In 1736, Leonhard Euler published a proof of Fermat's little theorem [1] (stated by Fermat without proof), which is the restriction of Euler's theorem to the case where n is a prime number. Subsequently, Euler presented other proofs of the theorem, culminating with his paper of 1763, in which he proved a generalization to the case where n is ...

  4. Cyclotomic polynomial - Wikipedia

    en.wikipedia.org/wiki/Cyclotomic_polynomial

    Over a finite field with a prime number p of elements, for any integer n that is not a multiple of p, the cyclotomic polynomial factorizes into () irreducible polynomials of degree d, where () is Euler's totient function and d is the multiplicative order of p modulo n.

  5. Totient summatory function - Wikipedia

    en.wikipedia.org/wiki/Totient_summatory_function

    In number theory, the totient summatory function is a summatory function of Euler's totient function defined by ():= = (),.It is the number of ordered pairs of coprime integers (p,q), where 1 ≤ p ≤ q ≤ n.

  6. Reduced residue system - Wikipedia

    en.wikipedia.org/wiki/Reduced_residue_system

    The cardinality of this set can be calculated with the totient function: φ(12) = 4. Some other reduced residue systems modulo 12 are: Some other reduced residue systems modulo 12 are: {13,17,19,23}

  7. Carmichael's totient function conjecture - Wikipedia

    en.wikipedia.org/wiki/Carmichael's_totient...

    The totient function φ(n) is equal to 2 when n is one of the three values 3, 4, and 6. Thus, if we take any one of these three values as n, then either of the other two values can be used as the m for which φ(m) = φ(n).

  8. Multiplicative function - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_function

    In number theory, a multiplicative function is an arithmetic function f(n) of a positive integer n with the property that f(1) = 1 and = () whenever a and b are coprime.. An arithmetic function f(n) is said to be completely multiplicative (or totally multiplicative) if f(1) = 1 and f(ab) = f(a)f(b) holds for all positive integers a and b, even when they are not coprime.

  9. Glossary of number theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_number_theory

    Euler's totient function For a positive integer n, Euler's totient function of n, denoted φ(n), is the number of integers coprime to n between 1 and n inclusive. For example, φ(4) = 2 and φ(p) = p - 1 for any prime p.