When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Duodecimal - Wikipedia

    en.wikipedia.org/wiki/Duodecimal

    The duodecimal system, also known as base twelve or dozenal, is a positional numeral system using twelve as its base.In duodecimal, the number twelve is denoted "10", meaning 1 twelve and 0 units; in the decimal system, this number is instead written as "12" meaning 1 ten and 2 units, and the string "10" means ten.

  3. Senary - Wikipedia

    en.wikipedia.org/wiki/Senary

    That is, for every prime number p greater than 3, one has the modular arithmetic relations that either p ≡ 1 or 5 (mod 6) (that is, 6 divides either p − 1 or p − 5); the final digit is a 1 or a 5. This is proved by contradiction.

  4. List of numeral systems - Wikipedia

    en.wikipedia.org/wiki/List_of_numeral_systems

    Using all numbers and all letters except I and O; the smallest base where ⁠ 1 / 2 ⁠ terminates and all of ⁠ 1 / 2 ⁠ to ⁠ 1 / 18 ⁠ have periods of 4 or shorter. 35: Covers the ten decimal digits and all letters of the English alphabet, apart from not distinguishing 0 from O. 36: Hexatrigesimal [57] [58]

  5. Fraction - Wikipedia

    en.wikipedia.org/wiki/Fraction

    In general, a common fraction is said to be a proper fraction, if the absolute value of the fraction is strictly less than one—that is, if the fraction is greater than −1 and less than 1. [ 14 ] [ 15 ] It is said to be an improper fraction , or sometimes top-heavy fraction , [ 16 ] if the absolute value of the fraction is greater than or ...

  6. 0.999... - Wikipedia

    en.wikipedia.org/wiki/0.999...

    For example, 0.24999... equals 0.25, exactly as in the special case considered. These numbers are exactly the decimal fractions, and they are dense. [41] [9] Second, a comparable theorem applies in each radix (base). For example, in base 2 (the binary numeral system) 0.111... equals 1, and in base 3 (the ternary numeral system) 0.222

  7. Fixed-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_arithmetic

    A fixed-point representation of a fractional number is essentially an integer that is to be implicitly multiplied by a fixed scaling factor. For example, the value 1.23 can be stored in a variable as the integer value 1230 with implicit scaling factor of 1/1000 (meaning that the last 3 decimal digits are implicitly assumed to be a decimal fraction), and the value 1 230 000 can be represented ...

  8. Positional notation - Wikipedia

    en.wikipedia.org/wiki/Positional_notation

    Approximation may be needed due to a possibility of non-terminating digits if the reduced fraction's denominator has a prime factor other than any of the base's prime factor(s) to convert to. For example, 0.1 in decimal (1/10) is 0b1/0b1010 in binary, by dividing this in that radix, the result is 0b0.0 0011 (because one of the prime factors of ...

  9. Fractional part - Wikipedia

    en.wikipedia.org/wiki/Fractional_part

    By consequence, we may get, for example, three different values for the fractional part of just one x: let it be −1.3, its fractional part will be 0.7 according to the first definition, 0.3 according to the second definition, and −0.3 according to the third definition, whose result can also be obtained in a straightforward way by